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Figure 1. Self-supervised pre-training on pathology data improves performance on pathology downstream tasks compared to
ImageNet-supervised baselines. The 𝑦-axes show absolute differences in downstream task performance (Top-1 Acc. or mPQ Score). Linear
evaluation (left) is performed on 4 classification tasks (BACH, CRC, PatchCamelyon, and MHIST) and 1 nuclei instance segmentation task
(CoNSeP). Label-efficiency (right) is assessed by fine-tuning using small fractions of labeled data from the CoNSeP dataset.

Abstract
Computational pathology can lead to saving human lives,

but models are annotation hungry and pathology images are
notoriously expensive to annotate. Self-supervised learning
(SSL) has shown to be an effective method for utilizing un-
labeled data, and its application to pathology could greatly
benefit its downstream tasks. Yet, there are no principled
studies that compare SSL methods and discuss how to adapt
them for pathology. To address this need, we execute the
largest-scale study of SSL pre-training on pathology image
data, to date. Our study is conducted using 4 representative
SSL methods on diverse downstream tasks. We establish that
large-scale domain-aligned pre-training in pathology con-
sistently out-performs ImageNet pre-training in standard
SSL settings such as linear and fine-tuning evaluations, as
well as in low-label regimes. Moreover, we propose a set
of domain-specific techniques that we experimentally show
leads to a performance boost. Lastly, for the first time, we
apply SSL to the challenging task of nuclei instance segmen-
tation and show large and consistent performance improve-
ments. We release the pre-trained model weights1.

1. Introduction
The computational analysis of microscopic images of hu-

man tissue – also known as computational pathology – has
emerged as an important topic of research, as its clinical
implementations can result in the saving of human lives

*The first two authors contributed equally.
1
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by improving cancer diagnosis [57] and treatment [50].
Deep Learning and Computer Vision methods in pathol-
ogy allow for objectivity [18], large-scale analysis [23], and
triaging [7] but often require large amounts of annotated
data [60]. However, the annotation of pathology images re-
quires specialists with many years of clinical residency [42],
resulting in scarce labeled public datasets and the need for
methods to train effectively on them.

When annotated data is scarce for a given Computer Vi-
sion task, one common and practical solution is to fine-tune
a model that was pre-trained in a supervised manner us-
ing the ImageNet dataset [22, 39]. This paradigm of trans-
fer learning [39] was recently challenged by self-supervised
learning (SSL), which trains on large amounts of unlabeled
data only, yet out-performs supervised pre-training on Ima-
geNet [10,13,30]. In the field of pathology, large unlabeled
datasets are abundant [6,42,43,65] in contrast to the lack of
annotated datasets [60]. If we were to apply SSL effectively
to this huge amount of unlabeled data, downstream pathol-
ogy tasks could benefit greatly even if they contain limited
amount of annotated training data. Naturally, we ask the
question: How well does self-supervised learning help in
improving the performance of pathology tasks?

ImageNet pre-trained weights are commonly used in
medical imaging and are known to be helpful in attaining
high task performance [35, 37, 51, 67]. Due to the differ-
ence between natural images and medical images, large-
scale domain-aligned pre-training has the potential to push
performance beyond ImageNet pre-training [47]. Accord-
ingly, recent works show that SSL pre-training on pathol-
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ogy data can improve performance on downstream pathol-
ogy tasks [5, 19, 26, 63]. Our study aims to expand on these
previous works by evaluating multiple SSL methods on di-
verse downstream pathology tasks. In addition, we propose
techniques to adapt SSL methods that were designed for nat-
ural image data, to better learn from pathology data.

To understand how to adapt existing SSL methods to
work on pathology image data, we must identify several key
differences between natural and pathology imagery. Unlike
natural images, pathology images can be rotated arbitrar-
ily (impossible to determine a canonical orientation) and
exhibit fewer variations in color. Also, pathology images
can be interpreted differently depending on the field-of-view
(FoV) due to the multiple hierarchies and contextual differ-
ences involved in each task. We propose to overcome these
differences when adapting SSL methods for pathology data,
via changes to the training data augmentation scheme in par-
ticular, during pre-training.

In this paper, we carry out an in-depth analysis of 4 re-
cent and representative SSL methods; MoCo v2 [15], SwAV
[9], Barlow Twins [70], and DINO [10], when applied to
large-scale pathology data. For this purpose, we source 19
million image patches from Whole Slide Images (WSI) in
The Cancer Genome Atlas (TCGA) dataset [65] and apply
our domain-specific techniques in training the SSL methods
on this data. The evaluations are conducted for 2 different
downstream tasks over 5 datasets: (1) pathological image
classification using BACH [2], CRC [36], MHIST [64], and
PatchCamelyon [62] datasets, and (2) nuclei instance seg-
mentation and classification using the CoNSeP dataset [29].

Our large-scale study yields several useful contributions:
(a) we conduct the largest-scale study of SSL pre-training on
pathology image data to date, and show its benefit over using
ImageNet pre-trained weights on diverse downstream tasks
(see Fig. 1), (b) we propose a set of carefully designed data
curation and data augmentation techniques that can further
improve downstream performance, (c) we demonstrate that
SSL is label-efficient, and is therefore a practical solution
in pathology where gathering annotation is particularly ex-
pensive, and (d) for the first time, we apply SSL to the dense
prediction task of nuclei instance segmentation and show its
value under diverse evaluation settings. We release our pre-
trained model weights at https://lunit-io.github.
io/research/publications/pathology_ssl to fur-
ther contribute to the research community.

2. Related Work
2.1. Self-supervised Representation Learning

SSL methods learn representations through pre-text tasks
designed to exploit supervisory signals obtained from the
unlabeled data itself. We describe the 4 major paradigms of
SSL as commonly discussed in literature.

Contrastive Learning. Contrastive methods [31, 48, 49]
such as SimCLR [13] and MoCo v2 [15] learn to dis-
criminate each training data instance from all the others.
The objective is to learn similar representations of positive
pairs (perturbations by data augmentation) and discrimina-
tive representations in relation to negative pairs (other in-
stances). A limitation is the need for diverse negative pairs,
which is mitigated through large batch sizes [13] or memory
banks [15]. In this work, we explore MoCo v2 [15].
Non-contrastive Learning. Methods such as BYOL [30],
SimSiam [16], and Barlow Twins [70], share similarities
with contrastive learning methods in that they learn repre-
sentations of images under different augmented views. The
fundamental difference is that these approaches do not rely
on negative pairs, which allows them to work with small
batch sizes. In this work, we explore Barlow Twins [70].
Clustering. This paradigm uses the concept of clustering
and is shown in DeepCluster [8] and SwAV [9]. Clustering-
based SSL discriminates between clusters of image repre-
sentations instead of explicit pairs of images. In this work,
we explore SwAV [9].
SSL with VisionTransformer. The effectiveness of Vision
Transformers (ViT) [24] has been demonstrated on various
computer vision tasks. Thus, the paradigm shift from CNN
to ViT has recently emerged in the field of self-supervised
learning. Consequently, recent studies [10, 17, 41] try to in-
vestigate techniques that facilitate SSL with ViT-based ar-
chitectures. In this work, we explore DINO [10].
2.2. SSL in Medical Imaging

Recently, [47] investigates transfer learning in medical
imaging and observes that using domain-aligned datasets for
pre-training improves the transferability of models. More-
over, domain-specific SSL methods can further improve the
performance of models fine-tuned on downstream medical
image-related tasks [3, 5, 19, 26, 56, 63, 68]. In pathol-
ogy, [63] employs BYOL and evaluates pre-trained weights
learned from pathology data on image classification tasks.
[26] adopts SimSiam, showing that SSL improves pathol-
ogy image retrieval. Also recently, [19] uses SimCLR and
observes that SSL consistently improves on downstream
pathology tasks compared to ImageNet pre-training.

Unlike previous works that focus on just a single SSL
approach [12, 19, 40], or either CNNs or ViTs only [68],
we explore one representative method from each of the
aforementioned SSL paradigms including ViT-based SSL.
In this way, we establish a common and fair benchmark for
comparing these methods in pathology. Furthermore, we
evaluate the domain-specific pre-trained weights on vari-
ous downstream tasks, including the challenging task of nu-
clei instance segmentation. Finally, we devise techniques
for data augmentation that are specifically tailored to tackle
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Figure 2. Pathology images vs natural images. Pathology images are different from natural images in 3 major ways. They have no canon-
ical orientation (no “right way up”), have low color variation, and can be interpreted differently depending on field-of-view. Consequently,
self-supervised learning methods need to be implemented differently when working in the domain of pathology.

pathology-specific challenges, thus leading to better repre-
sentations and performance in the downstream tasks.

3. Self-supervised Pre-training for Pathology
The performance of SSL methods can vary greatly de-

pending on the composition of training data and the selected
set of data augmentation methods. SSL methods in the lit-
erature are commonly designed and evaluated in settings in-
volving natural images and may benefit from further adap-
tation when applied to different domains, such as pathology.
In this section, we discuss the differences between natural
images and pathology images. We also propose a set of
techniques that can be easily adopted to improve the per-
formance of models pre-trained on pathology image data.
3.1. Differences to Natural Images

Images contained in popular Computer Vision datasets
(e.g. ImageNet [22]) are often denoted as “natural images”.
Pathology images have several unique characteristics that
make them distinct from natural images. We discuss these
differences in this section and summarize them in Fig. 2.
No canonical orientation. Objects or scenes contained in
natural images are oriented based on plausibility, i.e. how a
human expects the objects to be oriented. Methods in Com-
puter Vision can take advantage of such assumptions or pat-
terns (e.g. Manhattan World assumption [20]) and thus SSL
methods do not randomly augment the orientation of images
at training time. However, pathology images can be oriented
in any way and still remain plausible. Furthermore, objects
(e.g. cells) are many and dispersed at arbitrary locations,
making it impossible to define a “canonical orientation”, i.e.
the correct standard orientation.
Low color variation. While natural images contain a large
range of colors due to the diversity of represented objects,
pathology images tend to display similar color distributions
(e.g. purple and pink staining). Though the staining can
vary across institutions and the same biological structures

have different appearances depending on the cancer type,
pathology images are more consistent than natural images.
Different FoVs. To correctly analyze pathology images,
different Field of Views (FoVs) must be considered. A larger
FoV allows pathologists and algorithms to better understand
the larger context of the tissue regions and cell classes to
make high-level predictions such as the grading of prostate
cancer [6]. In other tasks that require the classification of
individual cells or communities of cells, a smaller FoV is
required to increase the resolution on the objects of inter-
est [29]. Thus, a pre-trained model for pathology should
ideally be able to handle tasks from diverse FoVs.
3.2. Techniques to Adapt SSL for Pathology

In this section, we introduce our techniques for adapting
SSL methods for pathology imagery.
Random vertical flips. Unlike natural images, pathology
images are no less plausible or realistic when they are verti-
cally flipped. We therefore propose to randomly apply ver-
tical flips during SSL pre-training.
Stain augmentations. The typical color distortion em-
ployed by SSL methods applies a strong amount of jitter
to brightness, contrast, and saturation, resulting in pathol-
ogy images that look highly unrealistic. [58] proposes to
apply this jitter in pathology-specific color spaces such as
the HED-space [54]. [55] points out that naive jittering
can produce unrealistic images and proposes RandStainNA.
RandStainNA fits unimodal Gaussian distributions to the
channel-wise statistics of 3 color spaces (HSV, Lab, HED)
using images from the training dataset. At training time,
a color space is randomly chosen, then the target channel-
wise mean and standard deviations for that color space are
sampled from the fitted Gaussian distributions. Reinhard’s
method [52] is used to re-normalize the input image to match
the target statistics. RandStainNA is shown to improve su-
pervised learning performance for pathology, and therefore
we adopt it for our SSL pre-training.
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Figure 3. Color augmentations on pathology images. (a)
input images, (b) color jitter as used in typical SSL meth-
ods [13], (c) HED-light [58], (d) RandStainNA [55], and (e)
RandStainNA𝐺𝑀𝑀 . RandStainNA and RandStainNA𝐺𝑀𝑀 can
produce more realistic and plausible pathology images.

Data
source

No. of
WSIs

No. of patches
20x 40x Total

TCGA 20,994 9,497,768 9,502,301 19,000,069
TULIP 15,672 7,084,130 6,494,358 13,578,488
Total 36,666 16,581,898 15,996,659 32,578,557

Table 1. Unlabeled data for pre-training. Amount of data used
for pre-training in terms of the number of WSIs and the actual num-
ber of extracted patches (per FoV).

Furthermore, we attempt to improve the realism of Rand-
StainNA by fitting a Gaussian Mixture Model (GMM) with
10 components, to the channel-wise statistics of each color
space. The GMM can fit the covariances between vari-
ables and respect the multi-modality of the channel-wise
mean and standard deviation values. We denote this as
RandStainNA𝐺𝑀𝑀 and show the visual differences against
alternative methods in Fig. 3.

Lastly, we observe that previous works in SSL [13, 16,
30, 70] highlight the importance of color distortion. We
therefore propose to apply color distortion with a weaker
jittering strength as done in [19]. Our main experiments
adopt RandStainNA𝐺𝑀𝑀 along with random grayscale and
a weaker color jittering augmentation.
Using multiple FoVs. As aforementioned, some pathol-
ogy tasks require high FoV while others benefit from low
FoV. We identify that pathology tasks (e.g., image classifi-
cation and instance segmentation) are commonly defined at
approximately 20× [2,36] or 40× [29,62,64] objective mag-
nification. Therefore, we build our large-scale unlabeled
dataset using image patches from both magnifications.

4. Experiment Setup
4.1. Pre-training Dataset

Tab. 1 presents the scale of unlabeled data used for pre-
training. We first collect 20,994 WSIs from The Cancer

Dataset # Classes # Patches Patch size FoV Task

BACH 4 400 2048×1536 20× Cls
CRC 9 107,180 224×224 20× Cls
PCam 2 327,680 96×96 40× Cls
MHIST 2 3,152 224×224 40× Cls
CoNSeP 7 41 1000×1000 40× Seg

Table 2. Datasets for downstream tasks. Note that, Cls indicates
“image classification" and Seg is “nuclei instance segmentation”.

Genome Atlas (TCGA) and 15,672 WSIs from TULIP. Both
datasets consist of Hematoxylin & Eosin (H&E) stained
WSIs of various cancers. TCGA is publicly available and
widely used for training deep learning models [21, 23, 50].
TULIP is an internally collected dataset. To increase di-
versity and keep our experimental setting practical, we ex-
tract at most 1,000 patches of resolution 512 × 512 pixels
from each slide, resulting in a total of 32.6M patches (19M
from TCGA and 13.6M from TULIP). The pre-training
data covers two different FoVs; 20× (0.5𝜇m/px) and 40×
(0.25𝜇m/px) objective magnification. All experiments, un-
less specified otherwise, present the results of pre-training
on the TCGA dataset only.
4.2. Downstream Datasets

We validate the pre-trained models under classification
and segmentation tasks using various downstream datasets
described in Tab. 2. For image classification, the follow-
ing four datasets are used: BACH (four-class breast cancer
type classification) [2], CRC (nine-class human colorectal
cancer type classification) [36], MHIST (binary class col-
orectal polyp type classification) [64], and PCam (binary
class breast cancer type classification) [62]. The patches of
the datasets are labeled according to the predominant cancer
type or the presence of cancers. For nuclei instance segmen-
tation, we use CoNSeP [29] which contains segmentation
masks for each cell nucleus along with nuclei types. Further
details of the downstream datasets are shown in the supple-
mentary materials.
4.3. Pre-training Details

We learn representations using 4 different SSL meth-
ods. Unless otherwise mentioned, we use the ResNet-50
(1×) [33] architecture for MoCo v2 [15], Barlow Twins [70],
and SwAV [9]. For DINO [10], we use ViT-Small [24] with
different patch sizes, 16×16 and 8×8 (denoted DINO𝑝=16and DINO𝑝=8, respectively), as it has a comparable number
of parameters to ResNet-50 (1×). We follow the proposed
recipe of each SSL method and launch the pre-training, dis-
tributed across 64 NVIDIA V100 GPUs. The linear scal-
ing rule [27] is applied to adjust the learning rate: lr =
𝑙𝑟𝑚𝑒𝑡ℎ𝑜𝑑 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒∕256. We adopt the concept of the “Im-
ageNet epoch” from [59] for ease of analysis and train mod-
els for 200 ImageNet epochs, across all experiments. We
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Arch. Method BACH CRC PCam MHIST
Linear Fine-tune Linear Fine-tune Linear Fine-tune Linear Fine-tune

ResNet-50
Random 51.67 61.67 68.91 89.99 76.52 75.71 63.15 75.54
Supervised 80.83 86.67 90.93 92.09 80.79 80.63 76.25 78.92
MoCo v2 77.50 90.83 93.52 96.21 86.78 87.62 77.07 85.88
SwAV 83.33 82.50 95.78 93.31 85.28 87.60 71.14 77.99
BT 87.50 85.00 94.60 93.23 88.15 86.92 78.81 81.27

ViT-S
Random𝑝=16 45.00 57.50 69.90 86.10 74.43 75.42 63.46 62.13
Supervised𝑝=16 75.83 85.83 91.56 95.81 80.96 88.30 78.51 81.68
DINO𝑝=16 85.83 87.50 94.19 95.81 88.78 90.40 76.15 79.43
DINO𝑝=8 83.33 93.33 95.29 97.13 90.12 90.76 77.89 78.40

Table 3. Downstream evaluation of the image classification tasks. We report Top-1 accuracy for both linear and fine-tuning experiment
protocols for models trained using the TCGA data source. Note that, 𝑝 represents the patch size used in ViT.

define 10 ImageNet epochs for the warmup, and the cosine
scheduler is followed. The details of configurations can be
found in supplementary materials.
4.4. Downstream Training Details

For the downstream tasks, we follow the standard prac-
tice as introduced in various SSL papers [13, 30, 70]. For
image classification tasks, the datasets are split into training,
validation, and test sets. We perform the hyper-parameter
search based on the validation set, reporting the performance
on the test set. For the segmentation task, the Hover-Net [29]
architecture – a standard architecture in the nuclei instance
segmentation task – is adopted with the pre-trained back-
bone. We follow the same data pre-processing and training
schemes as in [29] to enable reproducibility and fair com-
parison of results. Further details of downstream tasks can
be found in the supplementary materials.
4.5. Evaluation Metrics

For image classification, we report top-1 accuracy, while
using panoptic quality (PQ) [38] for nuclei instance segmen-
tation. PQ is a standard metric for assessing the performance
of nuclear instance segmentation [29] that accounts for both
detection and segmentation quality with respect to each in-
stance. The PQ metric is defined as,

𝑃𝑄 =
∑

(𝑝,𝑔)∈𝑇𝑃 IoU(𝑝, 𝑔)

|𝑇𝑃 | + 1
2 |𝐹𝑃 | + 1

2 |𝐹𝑁|

, (1)

where 𝑝 denotes a predicted mask for each nuclei class and
𝑔 denotes a corresponding ground truth. The numerator
∑

(𝑝,𝑔)∈𝑇𝑃 IoU(𝑝, 𝑔) represents the summation of correctly
matched Intersection Over Union (IoU) over all pairs be-
tween predictions and ground truth. We count pairs be-
tween predictions and ground truths with IoU of more than
0.5 as True Positives (TP). False Positives (FP) and False
Negatives (FP) represent wrongly predicted predictions and
ground truth, respectively. Note that we use multi-class PQ

(mPQ) to measure the performance of instance segmenta-
tion and classification simultaneously.

5. Experimental Results
In this section, we carry out various experiments on the

downstream tasks of image classification and nuclei instance
segmentation. Through these experiments, we compare the
utility of various SSL pre-training methods in the light of
downstream pathology task performance. First, we present
our quantitative results using well-established evaluation
protocols. We then demonstrate the benefit of SSL pre-
training with a limited number of labeled data and under
different fine-tuning schedules. Finally, we perform an ab-
lation study to quantitatively verify the efficacy of our tech-
niques for adapting SSL methods to pathology data.

In evaluating downstream task performance, we stick to
well-established evaluation protocols in SSL. The first is lin-
ear evaluation (denoted Linear), where we freeze the back-
bone and train the remaining parts of the model (e.g., linear
classifier or decoders). The second is full fine-tuning (de-
noted Fine-tune), where all layers including the backbone
are fine-tuned. The former protocol assesses the quality
of learned representations, whereas the latter evaluates the
transferability of learned weights. In our experiments, we
compare against the ImageNet-supervised (denoted Super-
vised) pre-training baseline of the corresponding backbone
type as well as a random initialization (denoted Random)
baseline.
5.1. Image Classification

We present our linear evaluation and fine-tuning results
for 4 image classification benchmarks in Tab. 3.
Linear evaluation. In linear evaluation results, we
find that self-supervised TCGA pre-training typically out-
performs supervised ImageNet pre-training. Of the ResNet-
50 based SSL methods, Barlow Twins performs consis-
tently well, out-performing other methods on the BACH,
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Arch. Method CoNSePLinear Fine-tune

ResNet-50
Random 22.29 46.72
Supervised 34.25 49.60MoCo v2 39.85 51.75SwAV 40.45 51.16
BT 40.79 51.61

ViT-S
Random𝑝=16 20.55 27.19
Supervised𝑝=16 21.43 36.70
DINO𝑝=16 32.54 38.43
DINO𝑝=8 42.71 46.70

Table 4. Downstream evaluation for the nuclei instance seg-
mentation task. We report the mPQ score for both linear and fine-
tuning experiment protocols for models trained using the TCGA
data source.

PCam, and MHIST datasets. Of the ViT-based SSL meth-
ods, DINO𝑝=16 achieves competitive results, and DINO𝑝=8performs even better on the CRC and PCam datasets. The
improved performance of DINO𝑝=8 is in line with observa-
tions from [10] which shows that performance improves at
the cost of computation with smaller patch size. One excep-
tion is on the MHIST dataset, where the supervised base-
line shows good performance. Based on the linear evalua-
tion results, we can certainly claim that domain-aligned pre-
training improves representation quality.
Fine-tuning. Under fine-tuning, we find that the
trends are similar but with notable changes. Firstly, as
shown in other SSL works, the performance gap be-
tween ImageNet-supervised and TCGA-SSL reduces. Fur-
thermore, MoCo v2 shows consistently high performance
among CNN methods, showing that it may be the architec-
ture of choice for transfer learning settings using CNNs. Re-
garding ViTs, we find that the trends are almost identical to
linear evaluation except that the fine-tuned performances are
often better than CNN counterparts trained using SSL on
TCGA data. For classification tasks, then, SSL using ViT
on large-scale pathology data is beneficial.
5.2. Nuclei Instance Segmentation

To the best of our knowledge, we show for the first time,
the effect of self-supervised domain-aligned pre-training on
a downstream dense prediction task. We run experiments on
the CoNSeP dataset for the task of nuclei instance segmen-
tation and report the mPQ score in Tab. 4.
CNN experiments. The performance of SSL using
ResNet-50 shows similar trends to the case of image clas-
sification, where Barlow Twins performs well on the lin-
ear evaluation protocol and MoCo v2 performs well in fine-
tuning. More consistently than in the case of classification,
SSL pre-trained models out-perform supervised ImageNet
pre-training by a large margin, especially considering the
difficulty of increasing the mPQ score.

Method Pre.
Data

Top-1 Acc. (%) mPQ
BACH CRC PCam MHIST CoNSeP

Random - 51.67 68.91 76.52 63.15 22.29
Supervised IN 80.83 90.93 80.79 76.25 33.49
MoCo v2 IN 71.67 92.86 82.37 79.73 39.13
MoCo v2 TCGA 77.50 93.52 86.78 77.07 39.85
MoCo v2 TC+TU 85.00 93.94 86.53 82.29 41.40

Table 5. Varying pre-training datasets under the linear evalu-
ation protocol. We consider ImageNet (IN), TCGA, and TCGA
and TULIP combined (TC+TU) as pre-training datasets. Training
with TC+TU results in consistent performance improvements.

ViT experiments. To the best of our knowledge, we
are the first to integrate ViT backbones into the HoVer-
Net architecture for nuclei instance segmentation. We find
that DINO trained on TCGA data out-performs ImageNet-
trained weights for DINO𝑝=16 by a large margin, show-
ing again the importance of domain-aligned SSL. While
DINO𝑝=16 does not work well in neither linear nor fine-
tuning evaluations, DINO𝑝=8 out-performs even CNN-
based methods in linear evaluation and performs reasonably
well with fine-tuning. Future work may be able to further
unlock the power of transformers as a backbone for nuclei
instance segmentation.
5.3. Pre-training on Different Datasets

The experiment aims to investigate the impact on the
downstream task in accordance with the pre-training data.
We select MoCo v2 as it has previously shown robust per-
formance in relation to various domain-specific data [61].
We show our linear evaluation results in Tab. 5 where we
compare against MoCo v2 pre-training on ImageNet2 as
well as on the combined TCGA and TULIP data. We note
that TCGA-pretraining out-performs supervised/SSL pre-
training with ImageNet on BACH, CRC, PCAM, and CoN-
SeP. When adding TULIP data into the mix, we can use a to-
tal of 36K slides and 32.6M patches for pre-training, and we
see that this results in the overall best performance. Through
these experiments, we conclude that using a domain-aligned
dataset such as TCGA is useful, and increasing the scale and
diversity of data can further boost performance.
5.4. Fine-tuning with Limited Labeled Data

In the pathology domain, acquiring high-quality annota-
tions require expert-derived labor and exhaustive refinement
to maximize consensus across annotators, hindering the es-
tablishment of large-scale annotated datasets. Prior findings
in computer vision and medical imaging show that SSL pre-
trained models are label-efficient under fine-tuning evalua-
tions [3, 14]. To evaluate the label-efficiency of pre-trained
models in the pathology domain, we perform similar eval-

2We use a publicly available ImageNet pre-trained model for MoCo v2.
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Method
CRC (Top-1 Acc.) CoNSeP (mPQ)
1% 10% 100% 10% 30% 100%

ResNet-50
Supervised 90.28 93.87 92.09 40.01 41.92 49.60
MoCo v2 91.73 95.10 96.21 42.59 43.15 51.75
SwAV 89.26 92.84 93.31 39.97 42.94 51.16
BT 91.23 92.84 93.23 41.66 44.10 51.61
ViT-S
Supervised𝑝=16 93.15 94.76 95.81 18.49 20.92 36.70
DINO𝑝=16 94.03 94.92 95.81 23.22 25.85 38.43
DINO𝑝=8 95.03 96.27 97.13 35.53 37.82 46.70

Table 6. Label-efficiency. Full fine-tuning results when using
a limited number of training samples for the CRC and CoNSeP
downstream benchmarks.

Figure 4. Different learning schedules for the nuclei instance
segmentation task using CoNSeP. We scale up the learning
schedule from 1× (20 epochs) to 5× (100 epochs).

uations and fine-tune our models while varying the labeled
data fraction. Following prior works [13,70], subsets of size
1% and 10% are sampled for the image classification dataset.
We pick CRC dataset since it has sufficient amounts of data
as well as a number of classes to conduct the experiment.
On the other hand, the CoNSeP dataset has insufficient data
to conduct the same experiment, and therefore, we use sub-
sets of size 10% and 30% for nuclei instance segmentation.
Further details can be found in our supplementary materials.

Tab. 6 presents fine-tuning evaluation results with vary-
ing amounts of downstream labeled data. Compared to the
Supervised baselines, SSL pre-trained weights out-perform
the ImageNet pre-trained weights. In particular, MoCo v2
and DINO𝑝=8 show the best performances for ResNet-50
and ViT-S backbones respectively, maintaining the perfor-
mance gap to Supervised baselines even with increasing
amounts of labeled data.
5.5. Longer Learning Schedules

When evaluating SSL methods on downstream dense
prediction tasks, it is desirable to show results with longer
fine-tuning schedules [31, 53, 66] but this is rarely shown
in papers due to the diminishing performance gap between
methods when fine-tuning for longer [32]. To better demon-

S V G ColorJitter mPQweak strong
Baseline ✓ ✓ ✓ 50.71

✓ ✓ ✓ ✓ 51.03
✓ ✓ ✓ 51.07

HED-light ✓ 50.48
RandStainNA ✓ 50.86
RandStainNA𝐺𝑀𝑀 ✓ 50.71

RandStainNA
✓ ✓ 51.07
✓ ✓ ✓ 51.13
✓ ✓ ✓ 50.27

RandStainNA𝐺𝑀𝑀

✓ ✓ 50.99
✓ ✓ ✓ 51.61
✓ ✓ ✓ 50.51

where S: Solarization, V: Vertical Flip, G: Grayscale
Table 7. Augmentation ablation study on CoNSeP. mPQ scores
are computed after fine-tuning with a 1× schedule. Baseline refers
to the original Barlow Twins setting.

strate the real-world implications of SSL pre-training on
pathology data for nuclei instance segmentation, we scale
the training schedule from 1× to 5× and show mPQ scores
computed on the CoNSeP dataset in Fig. 4. In both lin-
ear and fine-tuning evaluations, we clearly observe the ben-
efit of TCGA pre-trained weights compared to ImageNet-
supervised weights and note that the performance gap is
maintained even at longer training schedules.
5.6. Ablation Study

As described in Sec 3.2, we propose to use data aug-
mentation techniques tailored for pathology data. We em-
pirically assess whether these domain-adapted techniques
are beneficial to SSL in pathology through an ablation
study. We select Barlow Twins [70] to conduct our exper-
iments and pre-train our models for 200 ImageNet epochs
on the TCGA dataset. The fine-tuning evaluation protocol
is adopted to better indicate real-world implications.
Augmentation Ablation. We select nuclei instance seg-
mentation as a target task, as it is one of the most practical
and challenging tasks in pathology. Starting from the default
data augmentation of Barlow Twins [70] denoted as Base-
line in Tab. 7, we add a random vertical flip augmentation in
order to take advantage of the nature wherein pathology im-
ages have no canonical orientation. Based on prior work that
claims that solarization can produce unrealistic and harmful
images for pathology model training [25], we exclude the
random solarization augmentation. With these two changes,
we observe a gain of 0.36 in mPQ score.

We expect that stain augmentations serve to generate
more domain-relevant augmented views, particularly, in
terms of color variations. However, stain augmentation
clashes with color distortion, as both alter the color statis-
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FoV Top-1 Acc. (%) mPQ
BACH CRC PCam MHIST CoNSeP

20× 79.17 95.04 85.24 79.32 50.66
40× 79.17 91.88 80.82 74.21 48.83
20×, 40× 85.00 93.23 86.92 81.27 51.61

Table 8. Magnification ablation study. Fine-tuning performance
when using different FoVs during pre-training.

tics of images. Thus, we begin by disabling color distortion
and then compare key stain augmentation methods first. We
find that RandStainNA [55] and RandStainNA𝐺𝑀𝑀 out-
perform HED-light [58], confirming insights from super-
vised image classification [55].

Next, we bring back the components of color distortion
(consisting of grayscale and color jitter) and evaluate them
in detail. We find that random grayscale augmentation is
surprisingly effective, given that the produced images may
not be considered plausible in pathology. As the standard
strength of color jittering produces highly unrealistic out-
puts, we evaluate a weaker jitter strength as well. Indeed,
we find that while the performance drops substantially when
using strong color jitter, using weak color jitter together with
random grayscale results in the best performances. In par-
ticular, RandStainNA𝐺𝑀𝑀 shows high performance, moti-
vating us to adopt it in our main experiments.

Through these observations, we substantiate our claim
that existing augmentation schemes designed for SSL using
natural images are sub-optimal for pathology data, necessi-
tating pathology-specific augmentation schemes when train-
ing on pathology data such as TCGA and TULIP.
Magnification Ablation. In Sec. 3.2, we argue that pre-
training using multiple magnifications or FoVs is beneficial
as downstream pathology tasks occur at various magnifica-
tions. We do find experimentally that using multiple FoVs in
the pre-training dataset is beneficial for overall downstream
task performance (see Tab. 8).

Interestingly, we observe that using both 20× and 40× is
best, while using only 20× is typically second-best. This is
the case even for datasets such as PCam, MHIST, and CoN-
SeP which consist of images collected at approximately 40×.
We hypothesize that the use of multiple magnifications is not
valuable due to the matching of magnifications between up-
stream and downstream training, but rather due to the diver-
sity of image appearances. Specifically, 20× images, due to
the wider field-of-view, are visually and texture-wise more
diverse than 40× images. Combining the two magnifica-
tions results in an even more diverse set of images. The
more diverse data also results in better convergence during
pre-training (see supplementary materials).

6. Discussion

In this section, we answer a few key questions that com-
putational pathology researchers may naturally ask when
considering self-supervised pre-training for their research.
Should we pre-train on pathology data? Yes – We have
consistently demonstrated that pre-training on pathology
data out-performs supervised pre-training on ImageNet by
performing comprehensive experiments on many SSL meth-
ods and datasets. Interestingly, SSL pre-trained weights can
maintain the performance gap on CoNSeP even for longer
training schedules. Our experiments demystify and confirm
the effectiveness of domain-aligned SSL pre-training on the
pathology domain.
Which SSL method is best? We find that there is no clear
winner. All SSL methods applied with domain-aligned pre-
training generally perform well. Thus, instead of focusing
on selecting a specific SSL method, we recommend that
practitioners focus on curating large-scale domain-aligned
datasets for SSL pre-training. Yet, some initial observations
may be useful to future research. For example, (a) Barlow
Twins tends to perform well in linear evaluations and MoCo
v2 in fine-tuning evaluations, and (b) ViTs benefit more from
domain-aligned SSL compared to CNNs.
What is a key ingredient for successful self-supervised
pre-training? Domain knowledge – our proposed set of
techniques are fully based on observations in pathology, and
are experimentally shown to be effective. By incorporating
domain-specific knowledge into the pre-training step, e.g.,
using stain augmentation and extracting patches from mul-
tiple FoVs, we go beyond the performance one can get from
naively applying SSL to a new dataset.

7. Conclusion and Future Work

In this paper, we conduct the largest and most compre-
hensive study of SSL in the pathology domain, to date,
using up to 33 million image patches during pre-training
and evaluating 4 representative SSL methods (both CNNs
and ViTs) on 2 downstream tasks and 5 datasets. Our
study confirms that large-scale domain-aligned pre-training
is helpful for pathology, showing its value in scenarios
with limited labeled data, longer fine-tuning schedules, and
when using larger and more diverse datasets for pre-training
(such as TCGA + TULIP). Furthermore, we propose a
set of techniques that are carefully designed by leverag-
ing pathology-specific knowledge, and integrate them into
the self-supervised pre-training stage, resulting in perfor-
mance improvements. We believe that further exploration
of domain-specific augmentation strategies will yield im-
proved techniques for pathology-specific SSL in the future.
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Appendix
Overview. In this supplementary material, we describe
the details of the downstream datasets adopted in the main
paper and show some example images. This document
also contains further implementation details regarding the
pre-training and downstream training steps, including fine-
tuning with limited labeled data. Last but not least, we
provide further analyses, such as the effectiveness of pre-
training for longer epochs and pre-training stability when
using data from different magnifications.

Note that the corresponding or relevant sections from the
main paper are referenced Note that the corresponding or
relevant sections from the main paper are referenced in blue
text in the section titles.

A. Downstream Dataset Details (Section 4.2)
In this section, we describe the details of the datasets used

in our analysis. We use BACH, CRC, PCam, and MHIST for
the image classification task, and CoNSeP for the nuclei in-
stance segmentation task. We sample a few training images
from each dataset and present them in Fig. A.1 and Fig. A.2.
in blue text in the section titles.
BACH. The goal of the Grand Challenge on BreAst Cancer
Histology (BACH) [2] is to classify pathology images into
four classes: normal, benign, in situ carcinoma, and invasive
carcinoma. The dataset is composed of 400 training images
and 100 test images. The test images are collected from a
different set of patients from the training images. All images
are collected from Hospital CUF Porto, Centro Hospitalar
do Tâmega e Sousa, and Centro Hospitalar Cova da Beira.
CRC. This dataset [36] consists of 100,000 training images
and 7,180 test images from H&E stained WSIs of human
colorectal cancer (CRC) and normal tissue. The training and
test images are extracted from 86 WSIs and 25 WSIs, respec-
tively. The slides are collected from the NCT Tissue Bank
and the University Medical Center Mannheim. The task is
the identification of nine tissue classes: adipose tissue, back-
ground, debris, lymphocytes, mucus, smooth muscle, nor-
mal colon mucosa, cancer-associated stroma, and CRC ep-
ithelium. All images are color normalized with the Macenko
method [46].
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(a)

(b)

(c)

(d)

Figure A.1. Example training images from the classification
datasets: (a) BACH, (b) CRC, (c) PCam, and (d) MHIST.

PCam. The PatchCamelyon (PCam) [62] dataset is de-
rived from the Camelyon16 [4] dataset that contains 400
H&E stained WSIs from two hospitals: Radboud Univer-
sity Medical Center (RUMC), and University Medical Cen-
ter Utrecht (UMCU). The PCam dataset includes 262,144
training images, 32,768 validation images, and 32,768 test
images. Each image is annotated with a binary label for de-
termining the presence of metastases.
MHIST. The minimalist histopathology image analysis
(MHIST) [64] dataset is comprised of 2,175 training images
and 977 test images. The images are extracted from 328
H&E stained Formalin Fixed Paraffin-Embedded (FFPE)
WSIs of colorectal polyps from Dartmouth-Hitchcock Med-
ical Center. The task is the binary classification between
hyperplastic polyps (HPs) and sessile serrated adenomas

Figure A.2. Example training images from the CoNSeP dataset.
The dataset provides annotated nuclei masks along with cell type
labels. Following the original HoVer-Net paper [29], we use the
following nuclei types for training and evaluation: ■ epithelial,
■ inflammatory, ■ spindle-shaped, and ■ miscellaneous.

(SSAs), where HPs are benign and SSAs are precancerous
lesions.
CoNSeP. The Colorectal Nuclear Segmentation and Phe-
notypes (CoNSeP) dataset [29] consists of 41 H&E images
and is split into 27 images and 14 images for training and test
sets, respectively. The data comes from University Hospi-
tals Coventry and Warwickshire, UK (UHCW). The anno-
tation contains segmentation masks of each nucleus along
with its class (See Fig. A.2). Note that the healthy epithe-
lial and dysplastic/malignant epithelial are considered gen-
eral epithelial types. Fibroblast, muscle, and endothelial are
matched into a spindle-shaped nuclei type. In total, 24,319
unique nuclei masks along with 4 major types out of 7 cell
types are used during training.
B. Implementation Details

In the interest of improving the reproducibility of our
study, we provide further details regarding our pre-training
data, setup, as well as details on how we conducted our
downstream evaluations. Furthermore, we discuss the de-
tails of the limited labeled data experiments.
B.1. Preparation of Pre-training Data (Section 4.1)

In selecting image patches to compose the TCGA dataset,
we first use an internal model with a DeepLab v3+ architec-
ture [11] to segment the foreground regions of WSI. From
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the candidate patches that are located in areas predicted
as foreground, we select up to 500 patches per magnifica-
tion, per slide, with equal spacing between them. To ensure
that we have informative image patches in our pre-training
dataset, we filter out patches that are too white (mean satu-
ration value below 5) or too smooth (mean squared Lapla-
cian below 15). For TULIP, we do not apply such filtering
logic due to the relatively smaller foreground area (too many
patches are lost otherwise).
B.2. Calculating Statistics of the Pre-training Data

(Section 4.1)

For the purpose of input image standardization during
SSL pre-training, we collect the per-channel mean and stan-
dard deviation of intensities in RGB space, using 10% of
the full unlabeled image data. This subsampling is done per
WSI, to maintain diversity and reduce computational cost.

In a similar manner, we compute the per-channel means
and variances in 3 color spaces (HSV, Lab, HED) for use
with the RandStainNA method, using 10% of the full im-
age data. Specifically, we compute per color space, and
per channel, the mean and standard deviation of per-image
mean intensity, as well as the mean and standard deviation
of the per-image standard deviation of intensity. Please refer
to [55] for further details.

For RandStainNA𝐺𝑀𝑀 , we similarly compute per color
space, and per channel, the per-image mean intensity and its
standard deviation. However, instead of simply finding the
mean and standard deviation of those values independently
(fitting individual unimodal Gaussian distributions 18 times
as in RandStainNA), we fit a 10-component Gaussian Mix-
ture Model (GMM) for each color space, yielding 3 models.
This is done to fit the covariance between the input vari-
ables (6 variables exist for each color space) and respect their
multi-modal nature.
B.3. Augmentation Details (Section 3.2)

Unless otherwise stated, in our experiments, we pre-
train by applying the following changes to the default
method-specific augmentation scheme:

• Random vertical flip (p=0.5).
• Color dropping (p=0.2): the color of images are

converted randomly to grayscale.
• Weak color jittering (p=0.8): the brightness, con-

trast, saturation, and hue of images are randomly ad-
justed with a strength of 0.2, 0.2, 0.2, 0.1,
respectively.

• RandStainNA𝐺𝑀𝑀 (p=0.8): per image, a color
space is randomly selected (from HSV, Lab, or HED),
then channel-wise mean and standard deviation values
are sampled from a GMM which is fitted on statistics

from part of the pre-training data (10%). The input im-
age is re-normalized based on these values, using Rein-
hard’s method [52].

B.4. SSL Methods (Section 4.3)

We provide implementation details of each SSL method
used in our analysis. We use the VISSL [28] library to pre-
train the the 4 studied SSL methods, and follow the same
configurations as originally proposed in [9, 10, 15, 70]. All
representations are trained for 200 ImageNet epochs, dis-
tributed over 64 V100 16GB GPUs. A linear warmup sched-
ule is applied for the first 10 epochs and a cosine learn-
ing rate decay is applied subsequently. Each method was
originally proposed with its specific augmentation schemes,
and we follow those original data augmentation pipelines
while adding our proposed techniques on top. Regarding
the RandStainNA augmentation, it requires the statistics of
3 color spaces (HSV, Lab, HED) to produce augmented im-
ages. To compute the statistics, we randomly sample 10%
of the unlabeled image patches from the corresponding pre-
training dataset.
MoCo v2. We use the SGD optimizer with an initial learn-
ing rate of 0.3. The learning rate is linearly scaled up based
on lr = 𝑙𝑟 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒/256, where batchsize is 4,096. The
memory bank size is fixed to 65,536, and a momentum co-
efficient m of 0.999 is used. Weight decay of 10−4 is utilized
for regularization.
SwAV. We use the SGD optimizer with an initial learning
rate of 0.3. The learning rate is linearly scaled up based
on lr = 𝑙𝑟 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒/256, where batchsize is 2,048. The
number of prototypes is 3,000 to avoid intractable compu-
tational costs from the Sinkhorn algorithm. 2×224 + 6×96
multi-crop augmentation is employed as done in the original
paper.
Barlow Twins. The LARS optimizer [69] is adopted for
Barlow Twins pre-training. Note that, as in the original
work [70], we apply different learning rates for weights and
biases, 0.2 and 0.0048, respectively. The biases and batch
normalization layers are excluded from LARS optimization
to follow the original implementation. The learning rates
of weights and biases are linearly scaled up based on lr =
𝑙𝑟 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒/256, where batchsize is 2,048. The dimen-
sion of the embeddings is 8,192, and training is conducted
with a coefficient of off-diagonal term 𝜆 = 5 ⋅ 10−3 and a
weight decay of 1.5 ⋅ 10−6.
DINO. We train the model with the AdamW [44] optimizer.
The learning rate of 0.0005 is used for stability during pre-
training. The learning rate is linearly scaled up based on lr =
𝑙𝑟 ∗ 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒/256, where batchsize is 1,024. Similar to the
learning rate decay, the weight decay also follows a cosine
schedule from 0.04 to 0.4. For DINO𝑝=16, 2× 224 + 8× 96
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multi-crop augmentation is employed, while 2× 224 + 6×
96 multi-crop augmentation is used for DINO𝑝=8.
B.5. Downstream Training Details (Section 4.4)

Image Classification. We split each downstream dataset
into training, validation, and test sets. The learning rate
and weight decay values are optimized using training and
validation, only. In the BACH dataset, the labels for the
test set are not provided. Hence, we split the training set
by a 6:1:3 ratio (training, validation, test). For the CRC
and MHIST datasets, the test set is provided with labels,
and the training set is split by a 7:3 ratio (training, valida-
tion). For the PCam dataset, we follow the original data
split. When splitting the data, we do it randomly but in
a class-balanced manner. Based on the performance mea-
sured on the validation sets, we perform a grid search of
learning rates from {1, 0.1, 0.01, 0.001} and weight decay
values from {0.1, 0.01, 0.001, 0}.

As data augmentation for ResNet-50, the input image is
randomly flipped both horizontally and vertically, at train-
ing time. For the BACH dataset, we apply random cropping
and resizing to 1024 × 768 at training time; at test time, we
resize the images to 1024 × 768. For ViT-S, the same aug-
mentation is used but all images are resized to 224 × 224.
We train the models with the SGD optimizer with a momen-
tum of 0.9 and a cosine learning rate decay. The ResNet-50
based models are trained for 200, 20, 20, and 90 epochs on
the BACH, CRC, PCam, and MHIST datasets, respectively.
The Transformer-based models are trained for 30 epochs on
the CRC and PCam datasets and for 200 and 90 epochs on
the BACH and MHIST datasets, respectively. During fine-
tuning, the backbone layers (i.e., ResNet-50 and ViT-S) are
trained with a learning rate 100 times lower than that of the
last classification layer.
Nuclei Instance Segmentation. We follow the standard
pipeline of HoVer-Net [29], as provided in its open-source
implementation3, including data augmentation and patch
extraction. Hover-Net defines a two-stage training proce-
dure. At the first stage, only the decoders are trained while
freezing the backbone layers. With the trained decoders,
all layers are then fine-tuned at the second stage. Techni-
cally, Preact-ResNet-50 [34] is employed in the original im-
plementation, but we replace it with the standard ResNet-
50 [33] and reproduce the results for a fair comparison. This
is done to perform SSL pre-training in a standard manner
while permitting this nuclei instance segmentation down-
stream task. Since we change the backbone, we perform
Grid Search to find a proper learning rate. We use 5 ⋅ 10−4
learning rate for both stages of HoVer-Net. Moreover, based
on the open-source implementation, the authors of HoVer-
Net fine-tune the first convolutional layer of ResNet at the

3https://github.com/vqdang/hover_net

first stage, but we keep them frozen.
Similar to the architecture of FPN-based instance seg-

mentation, HoVer-Net requires features from multiple scales
in the encoder. However, the outputs of the ViT-based
encoder are not compatible with the existing decoders of
Hover-Net without further modifications. In order to pro-
vide multi-scale features to the decoder, we refer to the pro-
tocol from [1] where the feature scales are interpolated us-
ing several transposed convolution layers with kernel size
𝑘 = 2 and stride 𝑠 = 2. More specifically, features from the
4𝑡ℎ, 6𝑡ℎ, 8𝑡ℎ, and 12𝑡ℎ layers are extracted from the ViT-S
architecture, which consists of 12 layers in total. With this
design, the decoders remain unchanged. For the sake of a
fair comparison, we also perform Grid Search on the ViT-S
architecture. The learning rate of 5 ⋅ 10−4 is used for both
stages of HoVer-Net.
B.6. Fine-tuning with Limited Labeled Data (Sec-

tion 5.4)

Image Classification. Following prior works [13, 30, 70],
we randomly sample 1% and 10% of the CRC training set
by balancing classes. Based on the fine-tuning procedure,
we train the models for 60 and 90 epochs for 1% and 10%
labeled data, respectively.
Nuclei Instance Segmentation using CoNSeP. In our lim-
ited labeled data experiments using CoNSeP, we control the
number of H&E images instead of the number of extracted
patches to mimic the real-world setting where one H&E im-
age corresponds to one unique patient. Since assuming 1%
of training data is unreasonable in the current setting (i.e,
0.27 H&E image), instead, we define the ratio of 10% and
30% for nuclei instance segmentation. Note that the re-
ported values in the experiments are the averaged number
from 3 repetitive experiments with different seed values for
image/patient selection. This is necessitated by the smaller
dataset size (compared to CRC) and is done for a fair com-
parison between methods.
C. Pre-training for more epochs (Section 5)

Typically, increasing the number of pre-training epochs
has shown to be effective in improving the learned represen-
tations in various SSL methods. To investigate the effective-
ness of the longer pre-training in the pathology domain, we
pre-train the model for 800 ImageNet epochs using MoCo
v2, SwAV, and Barlow Twins. Note that, due to computa-
tional costs, we report the results from DINO𝑝=16 trained for
400 ImageNet epochs.

Tab. B.1 and Tab. C.1 present the performance of im-
age classification and nuclei instance segmentation, respec-
tively. Compared to the results from 200 ImageNet epochs,
SwAV is the only method that benefits from the longer pre-
training in the fine-tuning protocol, especially in BACH,
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Arch. Method BACH CRC PCam MHIST
Linear Fine-tune Linear Fine-tune Linear Fine-tune Linear Fine-tune

ResNet-50

Random 51.67 61.67 68.91 89.99 76.52 75.71 63.15 75.54
Supervised 80.83 86.67 90.93 92.09 80.79 80.63 76.25 78.92
Epoch 200
MoCo v2 77.50 90.83 93.52 96.21 86.78 87.62 77.07 85.88
SwAV 83.33 82.50 95.78 93.31 85.28 87.60 71.14 77.99
BT 87.50 85.00 94.60 93.23 88.15 86.92 78.81 81.27
Epoch 800
MoCo v2 79.17 91.67 95.01 95.45 87.84 86.90 72.77 84.95
SwAV 82.50 85.83 96.46 92.74 86.16 87.05 75.54 85.47
BT 86.67 91.67 94.48 94.99 86.26 86.75 78.20 80.25

ViT-S

Random𝑝=16 45.00 57.50 69.90 86.10 74.43 75.42 63.46 62.13
Supervised𝑝=16 75.83 85.83 91.56 95.81 80.96 88.30 78.51 81.68
Epoch 200
DINO𝑝=16 85.83 87.50 94.19 95.81 88.78 90.40 76.15 79.43
Epoch 400
DINO𝑝=16 86.67 88.33 95.13 96.48 88.60 89.50 75.44 81.06

Table B.1. Downstream evaluation of image classification tasks under a different number of pre-training epochs. We report Top-1
accuracy for both linear and fine-tuning experiment protocols trained using the TCGA data source. Note that 𝑝 represents the patch size
used in ViT. We compare results column-wise and mark the best results in bold and the second-best results in underline for ResNet-50 based
methods and ViT-S methods separately.

Figure C.1. The effectiveness of longer pre-training according to learning schedules. We present fine-tuning evaluation results for the
nuclei instance segmentation task using the CoNSeP dataset. We see that there are few differences between the 200 epoch models and 800
epoch models, except that SwAV benefits from longer pre-training when the downstream task is fine-tuned with a limited learning schedule.

MHIST, and CoNSeP datasets. In contrast, the other meth-
ods show marginal improvements or are on par with the 200
ImageNet epoch counterparts. DINO𝑝=16 shows a slightly
improved performance on image classification, while nuclei
instance segmentation remains on par. Even in the different
learning schedules illustrated in Fig. C.1, we observe that no
clear benefit of the longer pre-training stands out in MoCo
v2 and Barlow Twins, yet SwAV consistently maintains the

benefit of the longer pre-training.
Across all experiments, we confirm that certain SSL

methods (e.g., SwAV) may require more pre-training iter-
ations, but generally increasing the number of pre-training
epochs shows marginal improvements on both image clas-
sification and nuclei instance segmentation tasks. In other
words, pre-training for 200 ImageNet epochs can be suffi-
cient to achieve satisfactory downstream performance, espe-
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Arch. Method CoNSePLinear Fine-tune

ResNet-50

Random 22.29 46.72
Supervised 34.25 49.60
Epoch 200
MoCo v2 39.85 51.75SwAV 40.45 51.16BT 40.79 51.61
Epoch 800
MoCo v2 40.93 51.64SwAV 40.59 52.39BT 40.65 52.00

ViT-S

Random𝑝=16 20.55 27.19
Supervised𝑝=16 21.43 36.70
Epoch 200
DINO𝑝=16 32.54 38.43
Epoch 400
DINO𝑝=16 32.93 39.03

Table C.1. Downstream evaluation for the nuclei instance
segmentation task under a different number of pre-training
epochs. We report the mPQ score for both linear and fine-tuning
experiment protocols for models trained using the TCGA data
source. We compare results column-wise and mark the best re-
sults in bold and the second-best results in underline for ResNet-50
based methods and ViT-S methods separately.

cially for MoCo v2, Barlow Twins, and DINO. We therefore
suggest that using 200 ImageNet epochs would be adequate
to study the potential of SSL pre-training in the pathology
domain.

D. Pre-training Stability with Different Magni-
fications (Section 5.6)

In the main paper, we show that it is beneficial to train on
image data from a combination of 20× and 40× objective
magnifications. Here, we show that pre-training stability is
also affected by the choice of magnification. In Fig. D.1,
we present the loss trajectory during the pre-training stage
using Barlow Twins. As shown in the graph, using a single
magnification produces unstable losses and the loss begins
to converge after approximately 4,000 and 7,000 iterations
for magnifications of 20× and 40×, respectively. The loss
values at the end of the pre-training stage are also higher
in the case of using a single magnification. In contrast, us-
ing multiple magnifications results in stable pre-training and
fast convergence, in addition to improved downstream task
performance.

Figure D.1. Loss progression while pre-training Barlow Twins
on different magnifications. Training on a combination of 20×
and 40× results in quick convergence and stable pre-training.

E. Larger Inputs for ViT (Section 5.2)

The implementation of the standard HoVer-Net [29]
method involves the fine-tuning of a pre-trained ResNet, us-
ing images with a resolution of 270 × 270. However, by
design, ViT expects input images of 224 × 224 resolution.
Given the potential advantages that larger input resolutions
can bring to the task of nuclei instance segmentation, we
adopt a positional embedding interpolation technique to in-
crease the input image size to 272 × 272, which is divisible
by both 16 and 8. Through this technique, we aim to main-
tain consistent input resolutions across the ResNet and ViT
backbones being evaluated. Tab. E.1 presents the result ac-
cording to the input size. We observe that the larger input
size improves performance for DINO𝑝=16, while the perfor-
mance of DINO𝑝=8 reduces.

F. Further Data Augmentation Ablation Study
(Section 5.6)

To provide a compelling demonstration of the effective-
ness of the proposed techniques, we opted for the most
practical, yet challenging fine-tuning setting of nuclei in-
stance segmentation. Through the application of the lin-
ear evaluation protocol, we further validate the effective-
ness of our techniques by showcasing improvements across
all datasets. Notably, our set of techniques consistently
and significantly improves the performance compared to the
baseline approach that relies on augmentations designed for
natural images. The improvement presented in Tab. F.1
serves as a clear signal of the effectiveness of our proposed
techniques, which were carefully designed with the aid of
domain-specific knowledge.
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Arch. Method CoNSePLinear Fine-tune
224 input

ViT-S

Supervised𝑝=16 21.43 36.70
DINO𝑝=16 32.54 38.43
DINO𝑝=8 42.71 46.70
272 input
Supervised𝑝=16 28.60 34.50
DINO𝑝=16 35.81 41.13
DINO𝑝=8 40.08 44.24

Table E.1. Downstream evaluation for the nuclei instance seg-
mentation task under a different input resolution. We report the
mPQ score for both linear and fine-tuning experiment protocols for
models trained using the TCGA data source. We compare results
column-wise and mark the best results in bold and the second-best
results in underline.

BACH CRC PCam MHIST CoNSeP
BT trained on TCGA 84.2 94.2 84.5 78.0 40.9+ our aug. techniques 87.5 94.7 87.6 79.5 41.3

Table F.1. Benefit of our augmentation techniques. Linear eval-
uation results show that our proposed augmentation techniques
consistently and significantly improve performance.

G. Intriguing Properties of Self-supervised ViT
(Section 5.2)

As part of an effort to explore the potential of domain-
aligned pre-training, we visualize the attention maps of
self-supervised ViT and supervised ViT pre-trained on Im-
ageNet. Our results, as illustrated in Fig. G.1, demon-
strate that SSL ViT interestingly identifies and locates cells
while also recognizing morphological phenotypes, which is
aligned with recent observations [12]. Specifically, atten-
tion heads 1 ∼ 4 attend to epithelial and inflammatory cells,
whereas heads 5 ∼ 6 focus on fibroblast cells. In contrast,
supervised ViT pre-trained on ImageNet fails to generate in-
terpretable signals due to the domain gap, highlighting the
effectiveness of domain-aligned pre-training in generating
informative signals for downstream tasks. We believe that
this intriguing property can be leveraged to enable future
potentials in the field of histopathology.

H. Qualitative Results of Nuclei Instance Seg-
mentation (Section 5.2)

In order to perform a qualitative assessment of the ef-
fect of domain-aligned pre-training on nuclei instance seg-
mentation, we compare the predictions of models using su-
pervised ImageNet pre-training and self-supervised TCGA
pre-training, adapted under the linear evaluation protocol.
The result presented in Fig. H.1 shows that domain-aligned

pre-training can offer the benefit on downstream tasks effec-
tively, resulting in capturing foreground cells and accurately
classifying them, in contrast to the model trained using Im-
ageNet pre-trained weight.
I. Slide-level Evaluation

The slide-level classification task is outside of the scope
of our work. Nonetheless, we conduct a preliminary exper-
iment to demonstrate the usefulness of the features learned
through SSL for this task, too. We train and test models
for the classification of breast cancer metastases in WSIs,
using the same configuration as CLAM [45] but on the
Camelyon16 [4] dataset. To extract features from the WSIs,
we use two pre-trained weights: “Supervised (IN)” and
“MoCo v2 (TC+TU)”. We find that models achieve an AU-
ROC of 0.986 when using “MoCo v2 (TC+TU)” pre-trained
weights, while models achieve an AUROC of 0.927 when
using “Supervised (IN)” pre-trained weights. This result in-
dicates that domain-aligned pre-training also can be benefi-
cial to the slide-level task.
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Figure G.1. Visualizing multi-head self-attentions of ViT. We visualize the attention map of several pre-trained ViT-S. Specifically, ViT-S
has 6 attention heads. We visualize each head from the last layer of ViT. Our visualizations are presented in rows, with each row displaying
attention maps alongside their corresponding overlayed image. The first two rows showcase the qualitative result of the supervised ViT
pre-trained on ImageNet, while the next two rows display the qualitative result of the self-supervised ViT (DINO𝑝=16) pre-trained on TCGA.
Note that, the input image is resized to 480 × 480 resolution, and overlaid in "red" are visual tokens whose attention weight > 0.5 and span
16 × 16 pixels.

Ground Truth Supervised Barlow Twins

Figure H.1. Visualizing predictions of models. We visualize the overlay predictions of different models on CoNSeP. A linear evaluation
protocol is adopted to more directly assess the quality of the representations learned during pre-training. We selected the best-performing
pre-trained model, Barlow Twins, based on the results of Table 4., obtained from the linear evaluation protocol. We find that predictions
from Barlow Twins are similar to the ground-truth, whereas the “Supervised” alternative produces poor nuclei boundaries and merges cells
incorrectly.
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