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Abstract

Inter-personal anatomical differences limit the accuracy
of person-independent gaze estimation networks. Yet there
is a need to lower gaze errors further to enable applications
requiring higher quality. Further gains can be achieved by
personalizing gaze networks, ideally with few calibration
samples. However, over-parameterized neural networks are
not amenable to learning from few examples as they can
quickly over-fit. We embrace these challenges and propose
a novel framework for Few-shot Adaptive GaZE Estima-
tion (FAZE) for learning person-specific gaze networks with
very few (≤ 9) calibration samples. FAZE learns a rotation-
aware latent representation of gaze via a disentangling
encoder-decoder architecture along with a highly adaptable
gaze estimator trained using meta-learning. It is capable
of adapting to any new person to yield significant perfor-
mance gains with as few as 3 samples, yielding state-of-the-
art performance of 3.18◦ on GazeCapture, a 19% improve-
ment over prior art. We open-source our code at https:
//github.com/NVlabs/few_shot_gaze 1.

1. Introduction
Estimation of human gaze has numerous applications in

human-computer interaction [8], virtual reality [34], auto-
motive [47] and content creation [52], among others. Many
of these applications require high levels of accuracy (cf.
[3, 43, 19, 2]). While appearance-based gaze estimation
techniques that use Convolutional Neural Networks (CNN)
have significantly surpassed classical methods [57] for in-
the-wild settings, there still remains a significant gap to-
wards applicability in high-accuracy domains. The cur-
rently lowest reported person-independent error of 4.3◦ [7]
is equivalent to 4.7cm at a distance of 60cm, which restricts
use of such techniques to public display interactions [60] or
crowd-sourced attention analysis [30].

*The first two authors contributed equally.
1This includes a real-time demo which takes < 10 seconds to record

9 calibration points for a new user and ∼ 1 minute to train a personalized
network on a laptop with an NVIDIA GTX GeForce 1060 GPU.
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Figure 1: Overview of the FAZE framework. Given a set of
training images with ground-truth gaze direction informa-
tion, we first learn a latent feature representation, which is
tailored specifically for the task of gaze estimation. Given
the features, we then learn an adaptable gaze estimation net-
work, AdaGEN, using meta-learning which can be adapted
easily to a robust person-specific gaze estimation network
(PS-GEN) with very little calibration data.

High-accuracy gaze estimation from images is difficult
because it requires either explicit or implicit fitting of a
person-specific eye-ball model to the image data and the es-
timation of their visual and optical axes. Moreover, it is well
understood that inter-subject anatomical differences affect
gaze estimation accuracy [11]. Classical model-based tech-
niques can often be personalized via few (9 or less) samples
(e.g., [11, 13]) but are not robust to image variations in un-
controlled settings. While feasible, subject-specific train-
ing of CNNs requires thousands of samples and is clearly
impractical [59]. Few-shot personalization of CNNs is dif-
ficult because training of highly overparametrized models
with only few training samples will lead to over-fitting.

https://github.com/NVlabs/few_shot_gaze
https://github.com/NVlabs/few_shot_gaze


We tackle these many-fold challenges by proposing
FAZE, a framework for learning gaze estimation networks
for new subjects using very few calibration samples (Fig. 1).
It consists of: i) learning a rotation-aware latent represen-
tation of gaze via a disentangling transforming encoder-
decoder architecture ii) with these features learning a
highly adaptable gaze estimator using meta-learning, and
iii) adapting it to any new person to yield significant perfor-
mance gains with as few as 3 samples.

In order to learn a robust representation for gaze, we
take inspiration from recent work on transforming encoder-
decoder architectures [15, 53] and design a rotation-
equivariant pair of encoder-decoder functions. We disen-
tangle the factors of appearance, gaze and head pose in the
latent space and enforce equivariance by decoding explic-
itly rotated latent codes to images of the same person but
with a different gaze direction compared to the input (via
a `1 reconstruction loss). The equivariance property of our
gaze representation further allows us to devise a novel em-
bedding consistency loss term that further minimizes the
intra-person differences in the gaze representation. We then
leverage the proposed latent embedding to learn person-
specific gaze estimators from few samples. To this end we
use a meta-learning algorithm to learn how to learn such
estimators. We take inspiration from the recent success of
meta-learning [1] for few-shot learning in several other vi-
sion tasks [6, 12, 31]. To the best of our knowledge, we are
the first to cast few-shot learning of person-specific gaze es-
timators as one of multi-task learning where each subject is
seen as a new task in the meta-learning sense.

We evaluate the proposed framework on two benchmark
datasets and show that our meta-learned network with its la-
tent gaze features can be successfully adapted with very few
(k ≤ 9) samples to produce accurate person-specific mod-
els. We demonstrate the validity of our design choices with
detailed empirical evidence, and demonstrate that our pro-
posed framework outperforms state-of-the-art methods by
significant margins. In particular, we demonstrate improve-
ments of 13% (3.94◦ → 3.42◦) on the MPIIGaze dataset,
and 19% (3.91◦ → 3.18◦) on the GazeCapture dataset over
the approach of [26] using just 3 calibration samples.
To summarize, the main contributions of our work are:
• FAZE, a novel framework for learning person-specific

gaze networks with few calibration samples, fusing
the benefits of rotation-equivariant feature learning and
meta-learning.
• A novel encoder-decoder architecture that disentangles

gaze direction, head pose and appearance factors.
• A novel and effective application of meta-learning to

the task of few-shot personalization.
• State-of-the-art performance (3.14◦ with k = 9 on

MPIIGaze), with consistent improvements over exist-
ing methods for 1 ≤ k ≤ 256.

2. Related Work

Gaze Estimation. Appearance-based gaze estimation [46]
methods that map images directly to gaze have recently sur-
passed classical model-based approaches [13] for in-the-
wild settings. Earlier approaches in this direction assume
images captured in restricted laboratory settings and use di-
rect regression methods [28, 27] or learning-by-synthesis
approaches combined with random forests to separate head-
pose clusters [45]. More recently, the availability of large
scale datasets such as MPIIGaze [57] and GazeCapture
[22], and progress in CNNs have rapidly moved the field
forward. MPIIGaze has become a benchmark dataset for
in-the-wild gaze estimation. For the competitive person-
independent within-MPIIGaze leave-one-person-out evalu-
ation, gaze errors have progressively decreased from 6.3◦

for naively applying a LeNet-5 architecture to eye-input
[57] to the current best of 4.3◦ with an ensemble of multi-
modal networks based on VGG-16 [7]. Proposed advance-
ments include the use of more complex CNNs [59]; more
meaningful use of face [58, 22] and multi-modal input
[22, 7, 54]; explicit handling of differences in the two eyes
[4]; greater robustness to head pose [61, 36]; improvements
in data normalization [55]; learning more informed inter-
mediate representations [32]; using ensembles of networks
[7]; and using synthetic data [42, 51, 24, 33, 36].

However, person-independent gaze errors are still insuf-
ficient for many applications [3, 43, 19, 2]. While signifi-
cant gains can be obtained by training person-specific mod-
els, it requires many thousands of training images per sub-
ject [59]. On the other hand, CNNs are prone to over-fitting
if trained with very few (k ≤ 9) samples. In order to ad-
dress this issue, existing approaches try to adapt person-
independent CNN-based features [22, 33] or points-of-
regard (PoR) [56] to person-specific ones via hand-designed
heuristic functions. Some methods also train a Siamese net-
work with pairs of images of the same subject [26].

Learned Equivariance. Generalizing models learned for
regression tasks to new data is a challenging problem. How-
ever, recent works show improvements from enforcing the
learning of equivariant mappings between input, latent fea-
tures, and label spaces [16, 39], via so-called transform-
ing encoder-decoder architectures [15]. In [53], this idea
is expanded to learn complex phenomena such as the orien-
tation of synthetic light sources and in [39] the method is
applied to real-world multi-view imagery to improve semi-
supervised human pose estimation. In contrast, we learn
from very noisy real-world data while successfully disen-
tangling the two noisily-labeled phenomena of gaze direc-
tion and head orientation.

Few-shot Learning. Few-shot learning aims to learn a new
task with very few examples [23]. This is a non-trivial prob-



lem for highly over-parameterized deep networks as it leads
to over-fitting. Recently, several promising meta-learning
[44, 50, 38, 40, 6, 29, 37] techniques have been proposed
that learn how to learn unique but similar tasks in a few-
shot manner using CNNs. They have been shown to be suc-
cessful for various few-shot visual learning tasks including
object recognition [6], segmentation [35], viewpoint esti-
mation [48] and online adaptation of trackers [31]. Inspired
by their success, we use meta-learning to learn how to learn
person-specific gaze networks from few examples. To the
best of our knowledge we are the first to cast person-specific
gaze estimation as a multi-task problem in the context of
meta-learning, where each subject is seen as a new task for
the meta-learner. Our insight is that meta-learning lends it-
self well to few-shot gaze personalization and leads to per-
formance improvements.

3. Method

In this section, we describe how we perform gaze esti-
mation from challenging in-the-wild imagery, with minimal
burden to the user. The latter objective can be fulfilled by
designing our framework to adapt well even with very few
calibration samples (k ≤ 9). We first provide an overview
of the FAZE framework and its three stages.

3.1. The FAZE framework

We design FAZE (Fig. 1) with the understanding that a
person-specific gaze estimator must encode factors partic-
ular to the person, yet at the same time, leverage insights
from observing the eye-region appearance variations across
a large number of people with different head pose and gaze
direction configurations. The latter is important for build-
ing models that are robust to extraneous factors such as poor
image quality. Thus, the first step in FAZE is to learn a gen-
eralizable latent embedding space that encodes information
pertaining to the gaze-direction, including person-specific
aspects. We detail this in Sec. 3.2.

Provided that good and consistent features can be
learned, we can leverage meta-learning to learn how to learn
few-shot person-specific gaze estimators for these features.
This results in few-shot learners which generalize better
to new people (tasks) without overfitting. Specifically, we
use the MAML meta-learning algorithm [6]. For our task,
MAML learns a set of initial network weights which allow
for fine-tuning without the usual over-fitting issues that oc-
cur with low k. Effectively, it produces a highly Adaptable
Gaze Estimation Network (AdaGEN). The final step con-
cerns the adaptation of MAML-initialized weights to pro-
duce person-specific models (PS-GEN) for each user. We
describe this in Sec. 3.3.
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Figure 2: Disentangling appearance, gaze and head pose
variations from an image with our Disentangling Trans-
forming Encoder-Decoder (DT-ED). We learn to translate
between pairs of images of the same person by rotating the
gaze and head pose codes. The encoder-decoder are super-
vised by a pixel-wise L1 loss (Eq. 3), with the gaze embed-
ding additionally supervised via gaze regression (Eq. 5).

3.2. Gaze-Equivariant Feature Learning

In this section, we explain how the learning of a function,
which understands equivalent rotations in input data and
output label can lead to better generalization in the context
of our final task of person-specific gaze estimation. In addi-
tion, we: (a) show how to disentangle eyeball and head rota-
tion factors leading to better distillation of gaze information,
and (b) introduce a frontalized embedding consistency loss
term to specifically aid in learning consistent frontal gaze
codes for a particular subject.

3.2.1 Architecture Overview

In learning a generalizable latent embedding space repre-
senting gaze, we apply the understanding that a relative
change in gaze direction is easier to learn in a person-
independent manner [26]. We extend the transforming
encoder-decoder architecture [15, 53] to consider three dis-
tinct factors apparent in our problem setting: gaze direction,
head orientation, and other factors related to the appearance
of the eye region in given images (Fig. 2). We disentangle
the three factors by explicitly applying separate and known
differences in rotations (eye gaze and head orientation) to
the respective sub-codes. We refer to this architecture as the
Disentangling Transforming Encoder-Decoder (DT-ED).

For a given input image x, we define an encoder E :
x → z and a decoder D : z → x̂ such that D (E(x)) = x̂.
We consider the latent space embedding z as being formed
of 3 parts representing: appearance (za), gaze direction or
eyeball rotation (zg), and head pose (zh), which can be ex-
pressed as: z =

{
za; zg; zh

}
where gaze and head codes

are flattened to yield a single column. We define zg as
having dimensions (3× F g) and zh as having dimensions(
3× Fh

)
with F ∈ N. With these dimensions, it is possi-

ble to apply a rotation matrix to explicitly rotate these 3D
latent space embeddings using rotation matrices.



(a) Only varying gaze direction, (θg, φg) ∈ [−25◦, 25◦]

(b) Only varying head orientation,
(
θh, φh

)
∈ [−20◦, 20◦]

Figure 3: Our disentangled rotation-aware embedding
spaces for gaze direction and head pose are demonstrated
by predicting embeddings ẑg , ẑh from a given sample, ro-
tating it to 15 points each, and then decoding them.

The frontal orientation of eyes and heads in our setting
can be represented as (0, 0) in Euler angles notation for az-
imuth and elevation, respectively assuming no roll, and us-
ing the x− y convention. Then, the rotation of the eyes and
the head from the frontal orientation can be described us-
ing (θg, φg) and

(
θh, φh

)
in Euler angles and converted to

rotation matrices defined as,

R(θ, φ) =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .
(1)

While training DT-ED, we input a pair of images of a
person xa and xb. We can calculate Rg

ba = Rg
b (Rg

a)
−1 to

describe the change in gaze direction in going from sample
a to sample b of the same person. Likewise for head ro-
tation, Rh

ba = Rh
b

(
Rh
a

)−1
. This can be done using the

ground-truth labels for gaze (ga and gb) and head pose
(ha and hb) for the pair of input samples. The rotation of
the latent code zga can then be expressed via the operation
ẑgb = Rg

abz
g
a. At training time, we enforce this code to be

equivalent to the one extracted from image xb, via a recon-
struction loss (Eq. 3). We assume the rotated codes ẑhb and
ẑgb , along with the appearance-code zaa, to be sufficient for
reconstructing xb through the decoder function such that,
D (ẑb) = xb. More specifically, given the encoder output
E (xa) = za =

{
zaa; zga; zha

}
, we assume the rotated ver-

sion of xa to match the embedding of xb, that is we assume{
ẑab ; ẑgb ; ẑ

h
b

}
=
{
zaa; Rg

baz
g
a; Rh

baz
h
a

}
(See Fig. 2).

This approach indeed applies successfully to noisy real-
world imagery, as shown in Fig. 3 where we map a sam-
ple into the gaze and head pose latent spaces, rotate to the
frontal orientation, and then again rotate by a pre-defined
set of 15 yaw and pitch values and reconstruct the image
via the decoder. We can see that the factors of gaze direction
and head pose are fully disentangled and DT-ED succeeds
in the challenging task of eye-region frontalization and re-
direction from monocular RGB input.

We train the FAZE transforming encoder-decoder archi-

tecture using a multi-objective loss function defined as,

Lfull = λreconLrecon + λECLEC + λgazeLgaze, (2)

where we empirically set λrecon = 1, λEC = 2, and λgaze =
0.1. The individual loss terms are explained in the following
sub-sections.

3.2.2 Reconstruction Loss

To guide learning of the encoding-decoding process, we ap-
ply a simple `1 reconstruction loss. Given an input image
xb and reconstructed x̂b obtained by decoding the rotated
embeddings ẑb of image xa, the loss term is defined as,

Lrecon (xb, x̂b) =
1

|xb|
∑

u∈xb,û∈x̂b

|û− u| , (3)

where u and û are pixels of images xb and x̂b respectively.

3.2.3 Embedding consistency Loss

We introduce a novel embedding consistency term, which
ensures that the encoder network always embeds images of
a person with different appearance but identical gaze direc-
tion to similar features. Usually this would require paired
images with only gaze directions changed. However, it is in-
tractable to collect such data in the real world, so we instead
exploit the learned equivariance of DT-ED. Before measur-
ing the consistency between latent gaze features from dif-
ferent samples, we first frontalize them by applying the in-
verse of the rotation matrix Rg

a using ground-truth gaze di-
rection ga. It should be noted that naively enforcing all
gaze features to be similar across persons may disregard the
inter-subject anatomical differences which should result in
different latent embeddings. Hence, we apply the embed-
ding consistency to intra-subject pairs of images only. We
validate this choice through experiments in Sec. B.1.

Given a batch of B image samples during training, we
formally compute the embedding consistency loss using,

LEC =
1

B

B∑
i=1

max
j=1...B

id(i)=id(j)

d
(
f(zgi ), f(zgj )

)
, (4)

where f(zg) = (Rg)
−1

zg corresponds to frontalized la-
tent gaze features. The function id(i) provides the person-
identity of the i-th sample in the batch, and d is a function
based on mean column-wise angular distance (between 3D
vectors). The max function minimizes differences between
intra-person features that are furthest apart, and is similar to
the idea of batch-hard online triplet mining [41].

During training, we linearly increase λEC from 0 until
sufficient mini-batches to cover 106 images have been pro-
cessed, to allow for more natural embeddings to arise before
applying consistency.



3.2.4 Gaze Direction Loss

Lastly, we add the additional objective of gaze estimation
via G : zg → ĝ, parameterized by a simple multi-layer per-
ceptron (MLP). The gaze direction loss is calculated using,

Lgaze (ĝ, g) = arccos

(
ĝ · g
‖ĝ‖‖g‖

)
. (5)

3.3. Person-specific Gaze Estimation

Having learned a robust feature extractor, which is tai-
lored specifically for gaze estimation, our final goal is to
learn a personalized gaze estimator with as few calibration
samples as possible. A straightforward solution for doing
this is to train a person-independent model with the training
data used to train DT-ED and simply fine-tune it with the
available calibration samples for the given subject. How-
ever, in practical setups where only a few calibration sam-
ples are available, this approach can quickly lead to over-
fitting (see experiments in Fig. 7a). In order to alleviate
this problem, we propose to use the meta-learning method
MAML [6], which learns a highly adaptable gaze network
(AdaGEN).

Adaptable Gaze Estimator (AdaGEN) Training. We
wish to learn weights θ∗ for the AdaGEN gaze predic-
tion model M such that it becomes a successful few-shot
learner. In other words, whenMθ∗ is fine-tuned with only
a few “calibration” examples of a new person P not present
in the training set, it can generalize well to unseen “val-
idation” examples of the same person. We achieve this by
training it with the MAML meta learning algorithm adapted
for few-shot learning.

In conventional CNN training the objective is to min-
imize the training loss for all the examples of all train-
ing subjects. In contrast, for few-shot learning, MAML
explicitly minimizes the generalization loss of a network
after minimizing its training loss for a few examples
of a particular subject via a standard optimization algo-
rithm, e.g., stochastic gradient descent (SGD). Addition-
ally, MAML repeats this procedure for all subjects in the
training set and hence learns from several closely related
“tasks” (subjects) to become a successful few shot learner
for any new unseen task (subject). We identify that person-
specific factors may have few parameters, with only slight
but important variations across people such that all people
constitute a set of closely related tasks. Our insight is that
meta-learning lends itself well to such a problem of person-
alization.

The overall procedure of meta-learning to learn the
optimal θ∗ is as follows. We divide the entire set of
persons S into meta-training (Strain) and meta-testing
(Stest) subsets of non-overlapping subjects. During each
meta-training iteration n, we randomly select one person

Ptrain from Strain and create a meta-training sample for
the person (via random sampling), defined as Ptrain =
{Dtrainc ,Dtrainv }, containing a calibration set Dtrainc =
{(zgi,gi)|i = 1 . . . k} of k training examples, and a val-
idation set Dtrainv = {(zgj ,gj)|j = 1 . . . l} of another
l examples for the same person. Here, zg and g refer to
the latent gaze representation learned by DT-ED and the
ground-truth 3D gaze vector, respectively. Both k and l are
typically small (≤ 20) and k represents the “shot” size used
in few-shot learning.

The first step in the meta-learning procedure is to com-
pute the loss for the few-shot calibration set Dtrainc and up-
date the weights θn at step n via one (or more) gradient
steps and a learning rate α as,

θ′n = f(θn) = θn − α∇LcPtrain(θn). (6)

With the updated weights θ′n, we then compute the loss
for the validation set Dtrainv of the subject Ptrain as
LvPtrain(θ′n) = LvPtrain(f(θn)) and its gradients w.r.t the
initial weights of the network θn at that training iteration n.
Lastly, we update θn with a learning rate of η to explicitly
minimize the validation loss as,

θn+1 = θn − η∇LvPtrain(f(θn)). (7)

We repeat these training iterations until convergence to
get the optimal weights θ∗.

Final Person-specific Adaptation. Having learned our
encoder and our optimal few-shot person-specific learner
Mθ∗ , we are now well poised to produce person-specific
models for each new person Ptest from Stest. We fine-tune
Mθ∗ with the k calibration imagesDtestc to create a person-
alized model for Ptest as

θPtest = θ∗ − α∇LcPtest(θ∗), (8)

and test the performance of the personalized model
MθPtest on person Ptest’s validation set Dtestv .

4. Implementation Details

4.1. Data pre-processing

Our data pre-processing pipeline is based on [55], a revi-
sion of the data normalization procedure introduced in [45].
In a nutshell, the data normalization procedure ensures that
a common virtual camera points at the same reference point
in space with the head upright. This requires the rotation,
tilt, and forward translation of the virtual camera. Please
refer to [55] for a formal and complete description, and our
supplementary materials for a detailed list of changes.



4.2. Neural Network Configurations

DT-ED. The functions E and D in our transforming
encoder-decoder architecture can be implemented with any
CNN architecture. We select the DenseNet architecture [18]
both for our DT-ED as well as for our re-implementation
of state-of-the-art person-specific gaze estimation methods
[26, 56]. The latent codes za, zg , and zh are defined to have
dimensions (64), (3× 2), and (3× 16) respectively. Please
refer to supplementary materials for further details.

Gaze MLP. Our gaze estimation function G is parame-
terized by a multi-layer perceptron with 64 hidden layer
neurons and SELU [21] activation. The MLP outputs 3-
dimensional unit gaze direction vectors.

4.3. Training

DT-ED. Following [9], we use a batch size of 1536 and
apply linear learning rate scaling and ramp-up for the first
106 training samples. We use NVIDIA’s Apex library2 for
mixed-precision training. and train our model for 50 epochs
with a base learning rate of 5× 10−5, l2 weight regulariza-
tion of 10−4, and use instance normalization [49].

Gaze MLP. During meta-learning, we use α = 10−5 with
SGD (Eq. 6), and η = 10−3 (Eq. 7) with the Adam opti-
mizer (α and β in [6]), and do 5 updates per inner loop itera-
tion. For sampling Dtrainv we set l = 100. During standard
eye-tracker calibration, one cannot assume the knowledge
of extra ground-truth beyond the k samples. Thus, we per-
form the final fine-tuning operation (Eq. 8) for 1000 steps
for all values of k and for all people.

4.4. Datasets

GazeCapture [22] is the largest available in-the-wild gaze
dataset. We mined camera intrinsic parameters from the
web for the devices used, and applied our pre-processing
pipeline (Sec. A.1) to yield input images. For training the
DT-ED as well as for meta-learning, we use data from 993
people in the training set specified in [22], each with 1766
samples, on average, for a total of 1.7M samples. To ensure
within-subject diversity of sampled image-pairs at training
time, we only select subjects with ≥ 400 samples. For
computing our final evaluation metric, we use the last 500
entries from 109 subjects that have at least 1000 samples
each. We select the k-shot samples for meta-training and
fine-tuning randomly from the remaining samples.

MPIIGaze [57] is the most established benchmark dataset
for in-the-wild gaze estimation. In comparison to GazeCap-
ture it has higher within-person variations in appearance in-
cluding illumination, make-up, and facial hair changes, po-
tentially making it more challenging. We use the images

2https://github.com/NVIDIA/apex

specified in the MPIIFaceGaze subset [58] only for evalu-
ation purposes. The MPIIFaceGaze subset consists of 15
subjects each with 2500 samples on average. We reserve
the last 500 images of each subject for final evaluations as
is done in [59] and select k calibration samples for personal-
ization by sampling randomly from the remaining samples.

5. Results
For all methods, we report person-specific gaze estima-

tion errors for a range of k calibration samples. For each
data point, we perform the evaluation 10 times using k ran-
domly chosen calibration samples. Each evaluation or trial
yields a mean gaze estimation error in degrees over all sub-
jects in the test set. The mean error over all such trials
is plotted, with its standard deviation represented by the
shaded areas above and below the curves. The values at
k = 0 are determined via G (zg). We train this MLP on the
GazeCapture training subset, without any person-specific
adaptation.

5.1. Ablation Study

We evaluate our method under different settings to better
understand the impact of our various design choices. For
all experiments, we train the models using the GazeCap-
ture dataset’s training set and test on the MPIIGaze dataset.
This challenging experiment allows us to demonstrate the
generalization capability of our approach across different
datasets. The ablation studies are summarized in Fig. 7. We
provide additional plots of the results of this ablation study
on the test partition of the GazeCapture dataset in the sup-
plementary material.

MAML vs. Finetuning. In Fig. 7a, we first evaluate the im-
pact of meta-learning a few-shot person-adaptive gaze esti-
mator using MAML (Sec. 3.3) and compare its performance
with naive finetuning. When no person-specific adaptation
is performed (i.e., k = 0), the person-independent baseline
model G (zg) with the features learned using a vanilla au-
toencoder (AE) results in a mean test error of 7.17◦. Using
MAML for person-specific adaptation with only one cali-
bration sample decreases the error to 6.61◦. The error re-
duces further as we increase k and reaches a mean value
of 5.38◦ for k = 32. In contrast, naively finetuning (AE-
Finetuning) the gaze estimator results in severe over-fitting
and yields very high test errors, in particular, for very low
k values. In fact, for k ≤ 3, the error increases to above
the person-independent baseline model. Since the model
initialized with weights learned by MAML clearly outper-
forms vanilla finetuning, in the rest of this section, we al-
ways use MAML unless specified otherwise.

Impact of feature representation. Fig. 7a also evaluates
the impact of the features used to learn the gaze estimation
model. Our proposed latent gaze features (Sec. 3.2) signif-

https://github.com/NVIDIA/apex
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Figure 4: Ablation Study: Impact of (a) learning the few-shot gaze estimator using MAML (Sec. 3.3) and using the trans-
forming encoder-decoder for feature learning (Sec. 3.2); (b) different loss terms in Eq. (2) for training the transforming
encoder-decoder; and (c) comparison of the different variants of embedding consistency loss term (Eq. (4)). We provide
additional results for the test partition of the GazeCapture dataset in the supplementary material.

icantly decrease the error, e.g., 4.87◦ vs. 5.62◦ with k = 9
for DT-ED (MAML) and AE (MAML), respectively. Note
that the gain remains consistent across all values of k. The
only difference between DT-ED and AE is that the latent
codes are rotated in DT-ED before decoding. Despite this
more difficult task, the learned code clearly better informs
the final task of person-specific gaze estimation, showing
that disentangling gaze, head pose, and appearance is im-
portance for gaze estimation.

Contribution of loss terms. We evaluate the impact of each
loss term described in Eq. (2) (Sec. 3.2) by incorporating
them one at a time into the total loss used to train DT-ED.
Fig. 7b summarizes the results. Using only the image re-
construction loss Lrecon in Eq. (3), the learned latent gaze
features result in an error of 4.87◦ at k = 9. Incorporating
gaze supervision Lgaze in Eq. (5) to obtain features that are
more informed of the ultimate task of gaze-estimation gives
an improvement of 26% from 4.87◦ to 3.60◦. Adding the
person-specific embedding consistency term LEC in Eq. (4)
to Lrecon also reduces the error significantly from 4.87◦ to
3.32◦ at k = 9 (an improvement of over 30%). Finally,
combining all loss terms improves the performance even
further to 3.14◦ (in total, an improvement of 36%).

Analysis of embedding consistency. In order to validate
our choice of the embedding consistency loss, in Fig. 7c, we
compare its performance with two other possible variants.
As described in Sec. 3.2.3, the embedding consistency loss
term minimizes the intra-person differences of the frontal-
ized latent gaze features. The main rationale behind this is
that the gaze features for a unique person should be con-
sistent while they can be different across subjects due to
inter-subject anatomical differences. We further conjecture
that preserving these inter-personal differences as opposed
to trying to remove them by learning person-invariant em-
beddings is indeed important to obtaining high accuracy for
gaze estimation. In order to validate this observation, we in-
troduce a person-independent embedding consistency term
which also minimizes the inter-person latent gaze feature
differences. As is evident from Fig. 7c, enforcing person-
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Figure 5: Comparison of FAZE against competitive CNN +
MAML baselines, evaluated on MPIIGaze.

independent embedding consistency of the latent gaze fea-
tures results in increased mean errors. In fact it performs
worse than only using the reconstruction loss (Lrecon).

One may argue the complete opposite i.e., the latent gaze
features should be hugely different for every subject for the
best possible subject-specific accuracy, but we did not find
this to be the case. To demonstrate this, we apply a triplet
loss (Ltriplet) [41], which explicitly maximizes the inter-
personal differences in gaze features in addition to mini-
mizing the intra-person ones. As is evident from Fig 7c this
results in a significant increase in the error. This suggests
that perhaps factors that quantify the overall appearance of
a person’s face and define their unique identity may not nec-
essarily be correlated to the anatomical properties that de-
fine “person-uniqueness” for the task of gaze estimation.

5.2. Comparison with CNN + Meta-Learning

An alternative baseline to FAZE can be created by re-
placing the DT-ED with a standard CNN architecture. We
take an identically configured DenseNet (to FAZE) and a
VGG-16 architecture for the convolutional layers, then add
2 fully-connected layers each with 256 neurons and train the
networks with the gaze objective (Eq. 5). The output of the
convolutional layers are used as input to a gaze estimation
network trained via MAML to yield the results in Fig. 5.
Having been directly trained on the (cross-person) gaze es-
timation objective, it is expected that the encoder network
would make better use of its model capacity as it does not
have to satisfy a reconstruction objective. Thus, we can
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Figure 6: Comparison of FAZE against state-of-the-art person-specific gaze estimation methods [26, 56]

call these highly competitive baselines. FAZE outperforms
these baselines with statistical significance, demonstrating
that the DT-ED training and our loss terms yield features
which are more amenable to meta-learning, and thus to the
final objective of personalized gaze estimation.

5.3. Comparison with State-of-the-Art

Few-shot personalization of CNN models in the con-
text of gaze estimation for very low k is very challenging.
Two recent approaches [56, 26] are the most relevant in
this direction, and we provide evaluations on highly com-
petitive re-implementations. Our results are presented in
Fig. 6 for both the test partition of the GazeCapture dataset
and the MPIIGaze dataset. Overall, we show statistically
significantly better mean errors over the entire range of
1 ≤ k ≤ 256 than all the existing state-of-the-art methods.
In addition, our performance between trials is more consis-
tent as shown by the narrower error bands. This indicates
robustness to the choice of the k calibration samples.

Ours vs Polynomial fit to PoR. In [56], Zhang et al. fit
a 3rd order polynomial function to correct initial point-
of-regard (PoR) estimates from a person-independent gaze
CNN. To re-implement their method, we train a DenseNet
CNN (identical to FAZE) and intersect the predicted gaze
ray (defined by gaze origin and direction in 3D with re-
spect to the original camera) with the z = 0 plane to esti-
mate the initial PoR and later refine it with a person-specific
3rd order polynomial function. Though this approach per-
forms respectably with k = 9, yielding 4.19◦ on MPIIGaze
(Fig. 6b), it suffers with lower k especially on GazeCapture.
Nonetheless, its performance converges to our performance
at k ≥ 128 showing its effectiveness at higher k despite its
apparent simplicity.

Ours vs Differential Gaze Estimation. Liu et al. [26]
introduce a CNN architecture for learning to estimate the
differences in the gaze yaw and pitch values between pairs
of images of the same subject. That is, in order to esti-
mate the gaze their network always requires one reference
image of a subject with known gaze values. Then given a
reference image Ia with a known gaze label ga and another

image Ib with unknown gaze label, their approach outputs a
∆gba, from which the absolute gaze for Ib can be computed
as ŷb = ya + ∆gba. Their original paper states a within-
MPIIGaze error with k = 9 at 4.67◦ using a simple LeNet-
5 style Siamese network and a pair of eye images as input.
We use 256 × 64 eye-region images from GazeCapture as
input and use a DenseNet-based architecture to make their
approach more comparable to ours. Our re-implementation
yields 3.53◦ for their method at k = 9 on MPIIGaze, a 1.2◦

improvement despite dataset differences. We show statisti-
cally significant improvements to [26] across all ranges of k
in our MPIIGaze evaluations, with our method only requir-
ing 4 calibration samples to compete with their best perfor-
mance at k = 256 (see the red and green curves in Fig. 6).
The improvement from our final approach is further empha-
sized in Fig. 6a with evaluations on the test subset of Gaze-
Capture. At k = 4, we yield a performance improvement
of 20.5% or 0.8◦ over [26].

6. Conclusion
In this paper we presented the first practical approach to

deep-learning based high-accuracy personalized gaze esti-
mation requiring only few calibration samples. Our FAZE
framework consists of a disentangling encode-decoder net-
work that learns a compact person-specific latent represen-
tation of gaze, head pose and appearance. Furthermore, we
show that these latent embeddings can be used in a meta-
learning context to learn a person-specific gaze estimation
network from very few (as low as k = 3) calibration points.
We experimentally showed that our approach outperforms
other state-of-the-art approaches by significant margins and
produces the currently lowest reported personalized gaze er-
rors on both the GazeCapture and MPIIGaze datasets.
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supported in part by the ERC Grant OPTINT (StG-2016-
717054).



References
[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez,

Matthew W Hoffman, David Pfau, Tom Schaul, Brendan
Shillingford, and Nando De Freitas. Learning to learn by
gradient descent by gradient descent. In NeurIPS, 2016.

[2] Margrit Betke, James Gips, and Peter Fleming. The camera
mouse: visual tracking of body features to provide computer
access for people with severe disabilities. IEEE Transactions
on neural systems and Rehabilitation Engineering, 10(1):1–
10, 2002.

[3] Ralf Biedert, Georg Buscher, Sven Schwarz, Jörn Hees, and
Andreas Dengel. Text 2.0. In CHI, 2010.

[4] Yihua Cheng, Feng Lu, and Xucong Zhang. Appearance-
based gaze estimation via evaluation-guided asymmetric re-
gression. In ECCV, 2018.

[5] J. Deng, Y. Zhou, S. Cheng, and S. Zaferiou. Cascade multi-
view hourglass model for robust 3d face alignment. In FG,
2018.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICML, 2017.

[7] Tobias Fischer, Hyung Jin Chang, and Yiannis Demiris. RT-
GENE: Real-Time Eye Gaze Estimation in Natural Environ-
ments. In ECCV, 2018.

[8] Lex Fridman, Bryan Reimer, Bruce Mehler, and William T.
Freeman. Cognitive load estimation in the wild. In CHI,
2018.

[9] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: training imagenet in 1 hour. CoRR, abs/1706.02677,
2017.

[10] Ralph Gross, Iain Matthews, Jeffrey Cohn, Takeo Kanade,
and Simon Baker. Multi-pie. IVC, 28(5):807–813, May
2010.

[11] Elias Daniel Guestrin and Moshe Eizenman. General theory
of remote gaze estimation using the pupil center and corneal
reflections. IEEE Transactions on biomedical engineering,
53(6):1124–1133, 2006.

[12] Liang-Yan Gui, Yu-Xiong Wang, Deva Ramanan, and
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Appendix
Due to constraints on the space available in the main paper,
we were unable to include all the details there. Here we
provide additional implementation details pertaining to our
(a) data pre-processing pipeline and (b) the configuration of
our DT-ED network. We also show additional results of the
ablation study (Section 5.1 in the main paper) on the test
partition of the GazeCapture dataset and the performance
of FAZE for the within MPIIGaze leave-one-person out set-
ting. Finally, we show the sensitivity of FAZE to various
design configurations.

A. Implementation Details
We describe further details in how we pre-process the
datasets used, and the configuration of the DT-ED ar-
chitecture. A reference implementation of both can be
found as open-source software at https://github.
com/NVlabs/few_shot_gaze.

A.1. Data Pre-processing

We employ a normalization procedure based on [55], which
is a revision of [45], but with a few small changes. We uti-
lize state-of-the-art open-source implementations for face
detection3 [17] and facial landmarks detection4 [5], respec-
tively. We use the Surrey Face Model [20] as the reference
3D face model, and select 4 eye corners and 9 nose land-
marks as described by the Multi-PIE 68-points markup [10]
for PnP-based [25] head pose estimation. This is in con-
trast to [45, 55] which instead use the 4 eye corners and 2
mouth corners. This is motivated by our observation that the
mouth corner landmarks are not sufficiently static due to fa-
cial expression changes, and that the inherent ambiguity in
determining head yaw with very few co-planar landmarks
in 3D leads to less reliable head pose estimation.

In our work, we utilize a single image as input which
contains both eyes. For this purpose, we select the mean
of the 2 inner eye corner landmarks in 3D as the origin of
our normalized camera coordinate system. We use a focal
length of 1300mm for the normalized camera intrinsic pa-
rameters, and a distance of 600mm from the face to produce
image patches of size 256× 64 to use as input for training.

A.2. Configuration of Disentangling Transforming
Encoder-Decoder (DT-ED)

We use the DenseNet architecture to parameterize our
encoder-decoder network [18]. We configure the DenseNet
with a growth-rate of 32, 4 dense blocks (each with 4 com-
posite layers), and a compression factor of 1.0. We neither
use dropout nor 1×1 convolutional layers. We use instance
normalization [49] and leaky ReLU activation functions

3
https://github.com/cydonia999/Tiny_Faces_in_Tensorflow

4
https://github.com/jiankangdeng/Face_Detection_Alignment

(with α = 0.01) throughout the network as they proved to
improve performance for all architectures.

To project CNN features back from latent features z, we
apply a fully-connected layer to output values equivalent to
32 feature maps of width 8 and height 2. The DenseNet de-
coder that we use to modelD is identical in construction to a
usual DenseNet but uses deconvolutional layers (with stride
1) in the place of normal convolutions, and 3 × 3 decon-
volutions (with stride 2) instead of average pooling at the
transition layers. To be faithful to the original implemen-
tation, we do not apply bias layers to convolutions in our
DenseNet-based DT-ED. We initialize all layers’ weights
with MSRA initialization [14], while biases of the fully-
connected layers are initialized with zeros.

B. Additional Results
We provide additional results of the ablation study on
the test partition of the GazeCapture dataset and evaluate
the within-dataset performance of FAZE on the MPIIGaze
dataset.

B.1. Ablation Study on GazeCapture

In the main paper, we provide the results of the ablation
study on the MPIIGaze dataset (Fig. 4 in the main paper).
Our evaluation setting is a cross-dataset evaluation, where
we train on the training partition of the GazeCapture dataset
[22] and test on the test partition of the same dataset as well
as on MPIIGaze [57]. Here we show additional results for
the GazeCapture test partition (Fig. 7).

In Fig. 7a we observe the same trends for the Gaze-
Capture test dataset that we observed for MPIIGaze. Our
proposed DT-ED architecture learns latent representations
that are better suited for gaze estimation than those learned
by a naive encoder-decoder architecture. Additionally, for
few-shot personalization significant gains in accuracy are
obtained with meta-learning an adaptable network, as we
propose, versus naively fine-tuning a network designed
for person-independent gaze estimation (Fine-tuning versus
MAML). The latter approach also leads to over-fits at very
low k. Fig. 7b shows the value of our proposed loss terms
of embedding consistency and of computing gaze from the
latent representations while training DT-ED, for GazeCap-
ture. Finally, Fig. 7c shows the consistent improvements
obtained for the GazeCapture dataset by preserving inter-
person differences versus not doing so.

B.2. Within-MPIIGaze Performance

So far Liu et al. [26] report the best known accuracy of
4.67◦ with 9 calibration samples on MPIIGaze with their
differential network architecture. They use the within MPI-
IGaze leave-one-subject out evaluation protocol for their
experiments. To directly compare against their method, we

https://github.com/NVlabs/few_shot_gaze
https://github.com/NVlabs/few_shot_gaze
https://github.com/cydonia999/Tiny_Faces_in_Tensorflow
https://github.com/jiankangdeng/Face_Detection_Alignment
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Figure 7: Ablation Study on GazeCapture (test): Impact of (a) learning the few-shot gaze estimator using MAML and using
the transforming encoder-decoder for feature learning; (b) different loss terms for training the transforming encoder-decoder;
and (c) comparison of the different variants of embedding consistency loss term.

evaluate the performance of our FAZE framework for this
experimental protocol (Fig. 8). With 9 calibration sam-
ples FAZE obtains a gaze error of 3.88, which is a 17% im-
provement over Liu et al.’s method. Note, also, that within-
MPIIGaze training performs worse than training with Gaze-
Capture (see Fig. 6 in the main paper). This is expected,
given the significantly larger diversity of subjects present in
the GazeCapture training subset (993) versus MPIIGaze (14
in a leave-one-out setting), which benefits both DT-ED and
MAML. This observation corroborates with similar ones
previously made in [22].

C. Sensitivity Analysis
We show the influence of various design parameters on the
overall performance of our algorithm. These analyses help
to determine the parameters’ optimal values.

C.1. Latent Gaze Code

Dimension Our latent gaze code has the dimensions of
3 × Fg . In order to empirically select the optimal value of
Fg , we evaluate the performance of FAZE for several dif-
ferent values of Fg = {16, 3, 2} shown in Fig. 9, while
keeping the dimensions of the appearance and head pose
codes fixed at 64 and 16 respectively. Empirically we find
Fg = 2 to be optimal for both datasets and hence select it
for our final implementation.

Normalization In general we find that is beneficial to nor-
malize our 3×Fg-sized latent gaze code to achieve the low-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64 128 256

No. of calibration samples (k)

3.0

3.5

4.0

4.5

5.0

5.5

M
ea

n
te

st
er

ro
r

/
d

eg

4.
10

3.
74

3.
51

3.
38 3.
42

3.
35

3.
24

3.
18 3.

27

3.
14 3.

26

3.
13 3.

19

3.
13 3.

23

3.
25

3.
11

3.
07

3.
06 3.
09

Within-MPI

GazeCapture -to- MPI

Figure 8: Gaze errors of FAZE for within-MPII leave-one-
person out training (blue); and training on GazeCapture’s
training partition and testing one MPIIGaze (orange).

est gaze errors. We experiment with various methods for
normalization, which involve computing an `2 norm along
a particular dimension and dividing all the observed values
for that dimension with the norm. We compute norms along
the Fg dimension resulting in 3 norms. Alternatively, one
can normalize along the 3 dimension, resulting in Fg norms.
We observe that normalizing along the Fg dimension, pro-
duces lower gaze errors for GazeCapture and equivalent
ones for MPIIGaze, versus the alternate approach (Fig. 10).
Hence, we use it for our final implementation.
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Figure 9: Performance of FAZE for different dimensions Fg
of the 3× Fg-dimensional latent gaze code.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64 128 256

No. of calibration samples (k)

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

M
ea

n
te

st
er

ro
r

/
d

eg

3.
66

3.
22

3.
10

3.
08

3.
03

3.
04

3.
00 2.
98

2.
93

2.
91 2.
94

2.
95

2.
89

2.
89 2.

93

2.
91

2.
84 2.
85

2.
82 2.

85

Norm. along 3 values

Norm. along Fg values

(a) GazeCapture (test)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 64 128 256

No. of calibration samples (k)

2.8

3.0

3.2

3.5

3.8

4.0

4.2

4.5

4.8

M
ea

n
te

st
er

ro
r

/
d

eg

4.
10

3.
74

3.
51

3.
38 3.
42

3.
35

3.
24

3.
18

3.
27

3.
14

3.
26

3.
13 3.

19

3.
13

3.
23

3.
25

3.
11

3.
07

3.
06 3.
09

Norm. along 3 values

Norm. along Fg values

(b) MPIIGaze

Figure 10: Performance of FAZE for normalizing the 3 ×
Fg-dimensional gaze code along the 3 or Fg dimensions,
respectively.


