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Figure 1. Comparison of the proposed EFE method against conventional gaze estimation methods. Our End-to-end Frame-to-Gaze
Estimation approach (EFE) is trained to predict eye gaze directly from the input camera frame. In contrast, most existing approaches rely
on additional pre-processing modules. For example, face and facial landmark detection methods are used in “data normalization” to obtain
eye or face patches, which are then used as inputs to gaze estimation models. Our approach, EFE, demonstrates that it is possible to skip
those steps while maintaining or improving performance.

Abstract

Despite the recent development of learning-based gaze
estimation methods, most methods require one or more eye
or face region crops as inputs and produce a gaze direction
vector as output. Cropping results in a higher resolution in
the eye regions and having fewer confounding factors (such
as clothing and hair) is believed to benefit the final model
performance. However, this eye/face patch cropping pro-
cess is expensive, erroneous, and implementation-specific
for different methods. In this paper, we propose a frame-
to-gaze network that directly predicts both 3D gaze origin
and 3D gaze direction from the raw frame out of the cam-
era without any face or eye cropping. Our method demon-
strates that direct gaze regression from the raw downscaled
frame, from FHD/HD to VGA/HVGA resolution, is possi-
ble despite the challenges of having very few pixels in the
eye region. The proposed method achieves comparable re-
sults to state-of-the-art methods in Point-of-Gaze (PoG) es-
timation on three public gaze datasets: GazeCapture, MPI-
IFaceGaze, and EVE, and generalizes well to extreme cam-
era view changes.

1. Introduction
Remote webcam-based gaze estimation is a well-studied

problem setting where images from a single user-facing
*These authors contributed equally to this work.

and remotely-placed camera are used to estimate the gaze
of a user. Effective solutions to this problem can enable
novel applications in gaze-contingent human-computer in-
teraction [3,21], adaptive user interfaces [8,14], and crowd-
sourced attention studies [23]. Unlike infrared-light de-
vices [45], webcam-based gaze estimation can allow for
large operating distances [41]. With the introduction of
large in-the-wild datasets [17, 42], many learning-based
convolutional neural network-based (CNN) approaches [24,
34, 38, 42] have been proposed, enabling gaze estimation
from a single front-facing camera.

Learning-based remote gaze estimation methods typi-
cally take small cropped patches as input to predict the gaze
direction. These inputs as well as gaze origin must be gen-
erated with pre-defined processes according to the facial
landmarks. Specifically, inputs to these methods are either
simply cropped images [13, 17] or image patches yielded
via a process known as “data normalization” [24, 29, 40].
Simple cropping methods usually simply crop the eye or
face according to the facial landmarks. Since it is cropping
directly on the 2D image without consideration of the 3D
head pose, it could result in different sizes and image ra-
tios in the case of large head rotations. This can introduce
unnecessary appearance variations for gaze estimator train-
ing, reducing performance [40]. With the simple cropped
face and eye images, recent gaze estimators can perform
cross-person gaze estimation by leveraging a large amount
of training data from multiple subjects [17]. To be able to



directly regress to on-screen Point-of-Gaze (PoG) without
gaze origin and gaze direction predictions, these methods
have to assume that the camera plane is coplanar to the
screen plane [13,17]. However, such a coplanarity assump-
tion cannot be easily held for many application scenarios.

To eliminate the coplanar assumption, we could first cal-
culate the gaze origin and then take the face/eye crop to
predict the gaze direction as a two-step approach. To ob-
tain the gaze origin and face/eye crop, data normalization is
proposed as a pre-processing step [29,40]. As shown in the
bottom of Fig. 1, it crops the eye/face patch out of the input
camera frame according to the facial landmarks and esti-
mates a 3D head pose by fitting a generic 3D face model,
which is further used to yield the 3D gaze origin. The gaze
estimation method then only needs to output the gaze di-
rection in the camera coordinate system. By composing the
predicted gaze direction with the gaze origin acquired at the
data normalization step, the gaze ray can be constructed.
Note there is no joint optimization of gaze origin and gaze
direction since the gaze origin is estimated separately from
facial landmarks and explicit head pose estimation. The ill-
posed problem of 3D head translation estimation from a 2D
image could introduce extra error in the depth estimation
of the gaze origin. Furthermore, the processes of data nor-
malization are often implemented as an expensive offline
procedure (see [24, 25] in particular).

Skipping the aforementioned pre-processing steps and
directly taking the raw frame as input is a highly challeng-
ing task and has rarely been investigated in the literature
due to small eye region and gaze original estimation. Since
CNNs typically accept small images around 224 × 224 to
512×512 pixels, we have to resize the raw input frame to be
much smaller from HD (720p) or Full HD (1080p) resolu-
tion. It results in a much smaller region of interest (face/eye)
than the cropped patches. Without the facial landmark, the
3D location of the gaze origin needs to be accurately esti-
mated from the monocular image which has not been inves-
tigated in previous works.

In this paper, we demonstrate that it is possible to train
an “End-to-end Frame-to-Gaze Estimation” (EFE) method
without making the aforementioned coplanar assumption.
As shown in the top of Fig. 1, our approach avoids the
need for expensive “data normalization” and directly re-
gresses a 6D gaze ray (3D origin and 3D direction) from
the camera frame without cropping the face/eye, allowing
the trained method to adapt to new camera-screen geome-
tries. The PoG is calculated by the 3D origin and 3D gaze
direction. We observe that the gaze origin can be predicted
accurately with a fully-convolutional U-Net-like architec-
ture (shown in Fig. 2). The network predicts a 2D heatmap
(h), which captures the 2D location of the gaze origin in-
side of the frame, and a depth map (d) that captures the
distance to the gaze origin in the third dimension. We take

the bottleneck features from the U-Net-like architecture and
pass them through a multi-layer perception (MLP) to pre-
dict the 3D gaze direction. With camera intrinsic and ex-
trinsic parameters, we intersect the gaze ray with the known
screen plane in a differentiable manner to yield PoG. This
architecture can be trained end-to-end and we evaluate it on
three existing large datasets: EVE [24], GazeCapture [17],
and MPIIFaceGaze [44]. We show that it achieves compa-
rable performance with competitive baselines using “data
normalized” inputs on the EVE, GazeCapture and MPI-
IFaceGaze datasets.

2. Related Works

2.1. Remote Gaze Estimation from RGB

Remote gaze estimation from RGB is a setting where a
single RGB camera faces the user and no additional instru-
ments such as IR light sources are used to make the gaze
estimation problem more tractable. Due to the challenges
imposed by this setting, even early methods for gaze estima-
tion tend to apply machine learning techniques [1,20,27,30]
but are limited to tackling person-specific gaze estimation
only. Recently released large-scale image datasets such
as MPIIGaze [42] and GazeCapture [17] enable so-called
cross-person (person-independent) gaze estimation, where
models are evaluated on data from people that were unseen
during training. Various CNN architectures have since been
proposed to improve gaze estimation [6,26,33,43], demon-
strating their efficacy on additional in-the-wild [15], labora-
tory [9, 10, 24, 39], and synthetic [35, 36] datasets.

Most of these approaches take as input either cropped
eye or face images [6, 9, 15, 17, 26] or so-called “data nor-
malized” images [16, 25, 39, 43] and do not directly learn
to predict gaze from the full camera frame. The GazeOnce
method utilizes multi-task learning to output face existence,
face location, facial landmarks, and 3D gaze direction with
the raw frame as the input [38], however, this method does
not output the gaze origin nor allow for eventual PoG esti-
mation. While few-shot adaptation approaches [18, 25, 41]
still have the opportunity to adapt to systematic errors due
to the user or technical setup, the performance of most
cross-person methods will vary greatly depending on the
pre-processing adopted during inference time. Our paper
demonstrates that it is possible to learn the complex map-
ping between frames and 6D gaze rays by designing appro-
priate modules for the sub-tasks of origin and direction re-
gression. As we learn to side-step complex pre-processing
such as facial landmark detection or data normalization, the
performance of our approach should not depend on techni-
cal setup related factors.
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Figure 2. The proposed end-to-end frame-to-gaze estimation architecture, EFE. We propose a U-Net-like architecture where the output
features are mapped to the 2D gaze origin location on the image and a sparse depth map, which are combined to produce the 3D gaze origin.
The 3D gaze direction is predicted with an MLP using the bottleneck features as input. The PoG is calculated using predicted gaze origin
and direction, together with camera transformation matrices (that define camera-to-screen geometry).

2.2. Learning-based PoG Estimation

Of the learning-based gaze estimation methods that take
RGB input, very few study the task of directly predicting
the Point-of-Gaze (PoG). For example, [17] assumes that
all PoGs are on the z-plane of the camera coordinate system
and directly regress PoG in centimeters, while [13, 43] di-
rectly regresses PoG (in cm or mm) regardless of changes in
camera-to-screen geometry (rotation, translation, and scal-
ing) between dataset participants. Other methods for es-
timating PoG take advantage of the displayed stimuli and
evaluate their saliency [28] or visual features [24] to cor-
rect the errors in estimated PoG. In [24], estimated gaze
direction is more explicitly composed with known pseudo-
ground-truth gaze origin (which is produced as a result of
“data normalization”) and this is combined with known
camera-to-screen geometry to produce PoG. We follow this
explicit geometric decomposition in our work but propose
to predict gaze origin via a neural network, removing the
need for “data normalization” at both training and inference
times.

2.3. End-to-end Learning in Gaze Estimation

In the field of gaze estimation, only very few works
extend their methods beyond the eye/face patch input or
gaze direction output. [17, 43] propose architectures that
take eye/face crops as input and yield PoG. [38] proposes a
multi-person gaze direction estimation method that begins
from a large input image, but their method does not predict
gaze origin and thus PoG cannot be directly computed. Our
method, EFE, begins from camera frames and ends with

PoG and can be trained end-to-end. As we learn the relation
between camera output and final quantity of interest (PoG),
we could consider our method to be truly end-to-end.

3. Method

Our aim is to learn a model that can estimate a 6D gaze
ray, including a gaze origin and a gaze direction, directly
from a camera frame in an end-to-end fashion. We call
our method End-to-end Frame-to-gaze Estimation (EFE).
To achieve this goal, we decompose the task into two by
predicting a gaze origin and a corresponding gaze direction.
We denote the input RGB image as X ∈ R3×H×W pixels,
and define the 6D gaze ray as consisting of the gaze origin
o ∈ R3 and the gaze direction r ∈ R3. Given camera pa-
rameters represented by the intrinsic camera matrix K and
the extrinsic matrix T, we compute the PoG p ∈ R3 on
screen. An overview of EFE is shown in Fig. 2.

3.1. Predicting Gaze Origin

A straightforward approach to predict the gaze origin
o ∈ R3 is directly regressing the 3D location coordinates.
However, estimating depth through a monocular RGB im-
age is ill-posed and challenging. Instead of regressing the
3D location, it is well-known that predicting the heatmaps
could generate a better estimation, as shown in the areas
of facial landmark localization [4] and human pose estima-
tion [32]. Motivated by that, we propose a U-Net-like ar-
chitecture to predict a 2D gaze origin heatmap h ∈ RH×W

and a sparse depth map d ∈ RH×W (see Fig. 2 for a visual
example).



The positions of gaze origins are not well defined. Most
datasets’ ground truth labels are created through facial land-
mark detection and data normalization [29]. Therefore,
learning a distribution of the prediction is more appropri-
ate than predicting a single point since the ground truth la-
bels are likely to contain some degree of error. We use h
to predict the 2D location of gaze origin g ∈ R2 on the
camera frame. We use the mean squared error loss Lheatmap
for heatmap prediction and the final h is obtained after soft-
argmax operation [5, 37].

Lheatmap =
1

n

n∑
i=1

∥h− ĥ∥22, (1)

where n = H × W , and ĥ is the ground truth heatmap
generated by drawing a 2D Gaussian centered at the gaze
origin. The predicted g location is similarly supervised by
a mean squared error loss Lg ,

Lg = ∥g − ĝ∥22, (2)

where the ĝ is the ground truth 2D gaze location on the cam-
era frame. The dot product h · d is used to predict the gaze
depth z ∈ R. Note that we do not use any approximated
depth map for supervision and that the d is solely learned
from Ld which is defined as

Ld = ∥z− ẑ∥1, (3)

where ẑ is the ground truth depth value. Our experiments
show that this approach outperforms a baseline of regress-
ing the 3D location in the coordinates. The gaze origin
o ∈ R3 is then calculated by transforming the image co-
ordinates to world coordinates utilizing the camera intrinsic
matrix K. Note that oz = z.

3.2. Predicting Gaze Direction

Since predicting the gaze direction is mapping from im-
age space to the 3D direction, it is not necessary to use
heatmap for the estimation. As shown in Fig. 2, we use the
bottleneck features in the middle of the U-Net-like architec-
ture for the prediction of gaze direction r ∈ R3 supervised
by the angular loss Lr. The gaze origin and gaze direction
prediction share the encoder that could benefit both tasks.
The gaze vectors are predicted as Euler angles in spherical
coordinates and transformed to 3-dimensional unit vector
r. Given the predicted gaze vector r and ground-truth gaze
vector r̂ the angular loss is calculated as

Lr = arccos
(

r̂ · r
∥r̂∥∥r∥

)
. (4)

3.3. Computing PoG

The PoG is defined by intersecting the 6D gaze ray (com-
posed of origin and direction) with a pre-defined screen

plane. The screen plane is defined based on the physical
screen with its z-axis pointing outwards and towards the
user. The estimated PoG should have a z-coordinate of zero
in the screen coordinate system, i.e. pz = 0. Using the gaze
origin o and gaze direction r, we can obtain the distance to
screen frame λ. Denoting screen frame normal as ns and a
sample point on the screen plane as as (e.g. the origin point
[0, 0, 0]), we can calculate λ as follows:

λ =
r · ns

(as − o) · ns
. (5)

After the distance to the screen frame is calculated, we can
find the intersection of the line of sight with the screen plane
to compute the PoG p as follows:

p = o+ λr. (6)

During training, we use mean squared error to supervise
PoG estimation:

LPoG = ∥p− p̂∥22 (7)

where the p̂ is the ground truth PoG.

3.4. End-to-end Frame-to-Gaze Estimation (EFE)

As shown in Fig. 2, the overall EFE takes a camera im-
age (frame) as input and yields a gaze origin heatmap h and
a sparse depth map d through two separate residual blocks.
Using the intrinsic camera matrix, the origin o in 3D space
is calculated. The gaze direction r is predicted using the
bottleneck features. Lastly, using o and d, a 6D gaze ray
is formed and intersected with a given screen plane to com-
pute PoG. The complete loss is

LTotal = λgLg +λhLheatmap +λdLd+λrLr+λPoGLPoG,
(8)

where the first three losses Lg, Lheatmap and Ld are for gaze
origin estimation.

4. Experiment
To demonstrate the effectiveness of EFE, we first com-

pare it with three end-to-end gaze estimation baselines to
show the advantage of our proposed method. We then con-
duct evaluations on three datasets, EVE [24], GazeCap-
ture [17], and MPIIFaceGaze [43] to show that learning the
mapping from frame to gaze is possible and that EFE does
it in a competitive manner when compared to existing state-
of-the-art methods.

4.1. Datasets and Preprocessing

EVE [24]. The EVE dataset is proposed for the end-to-
end gaze estimation task. It consists of continuous videos
collected from four cameras and uses a Tobii Pro Spectrum
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Figure 3. Three end-to-end frame-to-gaze baseline models. (a)
Direct Regression: A model that directly estimates PoG, (b) Sep-
arate Models: Two separate models estimate gaze origin and gaze
direction independently, and (c) Joint Prediction: A single model
that jointly predicts both gaze origin and direction.

(150Hz) eye tracker to provide the ground truth gaze labels.
Although the EVE dataset is proposed as a video dataset, we
create an image dataset using its frames with a subsampling
rate of 0.6 for ease of experimentation (only applied to the
training set). The frames are resized to 480× 270 pixels in
size before using as input to the evaluated models.

GazeCapture [17]. The GazeCapture dataset is collected
through crowdsourcing with phones and tablets. It consists
of over 1450 people and almost 2.5M frames. The dataset
provides the input raw frames and the PoG with respect to
the camera while assuming that the camera and screen are
coplanar.

MPIIFaceGaze [44]. The MPIIFaceGaze dataset is col-
lected from 15 subjects with their laptop under natural head
movements and diverse lighting conditions. There are 3000
face images for each subject. It provides both raw camera
frames, the 3D gaze origins estimated by data normaliza-
tion, the 3D gaze directions, and the 2D PoGs on the screen.

4.2. Implementation Details

Our U-Net-like architecture takes the EfficientNet-V2
small [31] architecture as the backbone. We observe that
LPoG is significantly higher than the other losses in the early
stages of training, as the model has not yet been able to esti-
mate the gaze origin and direction with reasonable accuracy.
Therefore, we do not optimize with respect to LPoG for the
first two epochs of the training process and set λPoG = 0.
We train EFE using the AdamW optimizer [19] for eight
epochs unless otherwise mentioned, using a batch size of
32. An exponential learning rate decay of factor 0.9 is ap-
plied, beginning from a learning rate of 0.0003. The origin
and PoG coordinates are standardized with train set metrics
for each of the datasets. λg is set to 2 and the remaining loss
weights are set to 1.

For the EVE dataset, we terminate the training after 8
epochs and set λPoG = 0 in the first 2 epochs. The inputs
to EFE are 480×270 pixels in size resized from the original
1920× 1080 pixels in the dataset.

For GazeCapture, we terminate the training after five
epochs and set λPoG = 0 for the first epoch as it is a large
dataset. The PoG prediction is truncated to the screen size
similar to the original work using the device type and ori-
entation information. The inputs to EFE are 512 × 512
raw camera frames created from the original dataset* by
re-projecting using a common virtual camera with a focal
length of 460 mm to consolidate images from diverse cam-
era devices and orientations.

For MPIIFaceGaze, we terminate training after 15
epochs and set λPoG = 0 in the first three epochs. The
inputs to EFE are 640×480 raw camera frame resized from
1280×720 pixels in the original dataset, and are created by
re-projecting using a common virtual camera with a focal
length of 550 mm.

4.3. End-to-End Frame-to-Gaze Baseline Models

Given the raw frame from the camera, we consider three
baseline models: direction regression, separate models, and
joint prediction as shown in Fig. 3. The direction regression
method directly estimates PoG without predicting any gaze
origin or gaze direction. The separate models method esti-
mates the gaze origin and direction independently through
two identical models. The joint prediction method estimates
gaze origin and direction via a shared convolutional neural
network and two separate MLPs. Importantly, the joint pre-
diction method is optimized with a PoG loss as well which
should improve PoG estimation performance. The joint pre-
diction baseline is the most similar one to EFE. However,
the main difference between EFE and these baselines stems
from the gaze origin prediction architecture. The heatmap-

*The GazeCapture dataset originally consists of images of size 640×
480 and 480× 640 due to the diverse mobile device orientations used.



Model Heatmap pred. Depth map pred. Gaze Origin (mm) Gaze Dir. (°) PoG (px)

Direct Regression - - 143.83
Separate Models 16.18 3.63 141.35
Joint Prediction 20.14 3.73 143.39
EFE w/o depth map ✓ 18.28 3.82 146.82
EFE (ours) ✓ ✓ 16.07 3.53 133.73

Table 1. Comparison to the baseline models on the EVE dataset. Accuracy of estimated gaze origin is reported in millimeters (mm),
gaze direction in degree (°), and PoG in screen pixels (px). The first three baselines correspond to the three models shown in Fig. 3. Note
that the input frames are the raw frames from the camera without any face and facial landmark detection.

based prediction of gaze origin allows EFE to model the un-
certainty, and the prediction of origin depth through sparse
depth maps allows this uncertainty to be propagated to the
depth prediction.

We evaluate the three baselines and EFE on the EVE
dataset since the dataset is specifically designed for the end-
to-end gaze estimation task. Also, EVE uses a complex and
offline data pre-processing scheme (including per-subject
calibration of a morphable 3D face model) and thus the
gaze origin labels acquired via data normalization are of
high quality, making the dataset a particularly challenging
benchmark for Frame-to-Gaze methods. We show in Tab.
1 that EFE outperforms all three baselines. The direct re-
gression neither predicts gaze origin nor gaze direction and
achieves poor performance compared to the other methods.
The separate models method achieves better results than the
other two baselines due to the larger model capacity. The
joint prediction is similar to our architecture and achieves
worse results than the separate models, which indicates that
it cannot learn gaze origin and direction jointly in an effec-
tive manner. In contrast, EFE achieves the best performance
compared with all three baselines.

Furthermore, we can see from Tab. 1 that performance
degrades greatly when we do not use the sparse depth map
estimation module, instead, using a MLP to predict z from
bottleneck features. This demonstrates that predicting a
heatmap for gaze origin regression combined with the learn-
ing of a sparse depth map for distance estimation is impor-
tant for Frame-to-Gaze architectures.

4.4. Comparison with State-of-the-art

In this section, we compare EFE with state-of-the-art
methods on three datasets, i.e. EVE, GazeCapture, and
MPIIFaceGaze.
Comparison with SotA on EVE. For the EVE dataset, we
list the performance of EyeNet reported in the original EVE
paper [24]. EyeNet uses either left or right-eye images as
input, and predicts gaze direction and PoG independently
for each eye. Note that EyeNet uses ground-truth gaze ori-
gins acquired via data normalization, similar to most other
state-of-the-art baseline methods. In addition, we train a

Model Inputs Gaze Dir.
(°)

PoG
(px)

EyeNet (static) [24] Right Eye 4.75 181.0
EyeNet (static) [24] Left Eye 4.54 172.7
FaceNet Face 3.47 134.10
EFE (ours) Frame 3.53 133.73

Table 2. Comparison with state-of-the-art methods on the EVE
dataset. Accuracy of estimated gaze direction is reported in de-
gree (°), and PoG in screen pixels (px).

model with the face images acquired from the data normal-
ization procedure and denote it FaceNet. It uses the ground
truth gaze origin acquired through data normalization and
the model itself only outputs gaze direction. This is the
most common and high-performing problem formulation in
learning-based gaze estimation. As in EFE, we use the same
EfficientNet-V2 small [31] as the backbone of FaceNet for
a fair comparison.

As shown in Tab. 2, EyeNet achieves the worst results
even with the normalized eye images. By taking a nor-
malized face image as input, FaceNet achieves better re-
sults, in line with the literature on face-based gaze estima-
tion [17, 43]. The input to FaceNet is a normalized face
image of size 256 × 256, while the input to EFE is a re-
sized raw frame of size 480 × 270. Note that the effective
face resolution is much smaller in the resized frame than in
the normalized face image. Nonetheless, EFE has compara-
ble performance to FaceNet. Thanks to end-to-end learning
with a direct PoG loss, we find that EFE has a slightly better
PoG estimate despite having worse performance on gaze di-
rection. This could be attributed to the fact that the ground-
truth gaze labels provided in EVE are themselves estimates
and contain some degree of error. We expect higher accu-
racy of the provided ground truth PoG as it is measured by a
desktop eye tracker, and a direct loss using this PoG ground-
truth would result in better learning and consequent model
performance. Indeed, our EFE performs best in terms of
PoG prediction.



Model Inputs Phone
PoG

Tablet
PoG

iTracker [17] Face&Eyes 2.04 3.32
iTracker (train aug) [17] Face&Eyes 1.86 2.81
SAGE [12] Eyes 1.78 2.72
TAT [11] Face 1.77 2.66
AFF-Net [2] Face&Eyes 1.62 2.30
EFE (ours) Frame 1.61 2.48

Table 3. Comparison with state-of-the-art methods on the
GazeCapture dataset. Accuracy of estimated PoG is reported
in centimeters (cm).

Model Input Gaze Dir.
(°)

PoG
(mm)

Full-Face [43] Face 4.8 42.0
FAR-Net* [7] Face&Eyes 4.3 -
AFF-Net [2] Face&Eyes 4.4 39.0
EFE (ours) Frame 4.4 38.9

Table 4. Comparison with state-of-the-art methods on the
MPIIFaceGaze dataset. Accuracy of estimated gaze direction
is reported in degrees (°), and PoG in millimeters (mm).

Comparison with SotA on GazeCapture. We show the
comparison between EFE and other state-of-the-art on the
GazeCapture dataset in Tab. 3. The results of iTracker [17]
are reported from the original paper and we list perfor-
mances for both phone and tablet on the GazeCapture
dataset. The iTracker method takes multiple inputs: the
cropped face, left eye, right eye, and face occupancy grid.
In contrast, EFE takes only the resized raw frame as input.
From the table, we can see that EFE outperforms iTracker
by a large margin. It shows that the proposed end-to-end
method is better than using multiple cropped images for di-
rect PoG regression.

In comparison with more advanced methods such as a
method using knowledge distillation [11] and a method tak-
ing eye corner landmarks as input [12], our EFE still per-
forms competitively, with lower PoG error on both phone
and tablet subsets. Note that EFE only requires the full
frame as input (albeit re-projected to a common set of cam-
era parameters) while all other methods require multiple
specifically prepared inputs such as cropped face image
[11,17], cropped eye image [12,17], “face grid” image [17],
and/or eye corner landmarks [12, 17]. EFE achieves com-
parable performance to the latest PoG estimation method
AFF-Net [2], which not only takes the cropped face and eye
patches as input but also incorporates complex feature fu-
sion between these patches.
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Figure 4. 2D histogram of PoG residuals on EVE. PoG error
distribution on the screen in pixels with the same predicted gaze
direction but different gaze origins. Left: gaze origin is calculated
by the data normalization. Right: gaze origin is predicted by EFE.
The comparison shows that our end-to-end learning approach ex-
hibits less bias in its PoG errors.

Comparison with SotA on MPIIFaceGaze. For the MPI-
IFaceGaze dataset, we compare EFE with state-of-the-art
PoG estimation methods, Full-Face [43], FAR-Net* [7], and
AFF-Net [2], under a 15-fold cross-validation evaluation
scheme. The numbers are copied from the corresponding
papers. As seen in Tab. 4, EFE outperforms the Full-Face
approach and is comparable to the FAR-Net* approach and
AFF-Net. Note that Full-Face, FAR-Net*, and AFF-Net use
face images after data normalization as input as well as the
ground truth gaze origin computed via data normalization,
therefore, the model itself only outputs the gaze direction.
Although the proposed EFE takes as input the raw frame,
which has fewer effective pixels on the face region, it still
achieves comparable results. Once again, the results show
that the proposed EFE gaze estimation pipeline is effective
even without the complex data normalization procedure.

4.5. Qualitative Analysis

In this section, we analyze our proposed method, EFE,
in a qualitative manner.

Bias in PoG residuals. The majority of gaze direction es-
timation methods use gaze origin determined via the data
normalization procedure as ground truth. Blindly relying
on this gaze origin value can result in systematic errors. In
contrast, EFE trains with a direct PoG loss which is more re-
liable and can correct the systematic errors caused by data
normalization. We observe this in Fig. 4 where we find that
EFE shows lower bias in terms of PoG residuals, in that its
error distribution is more centered and isotropic.

Visualization of Predicted Depth Maps. The depth map
predicted by EFE is supervised via a point-like loss (Ld),
which only refers approximately to the face region of the
visible user. Yet surprisingly, Fig. 5 shows that somewhat
plausible depth maps can be predicted. More specifically, a
rough notion of whether the user’s face is further away or
closer to the camera is captured. It is interesting that such
weak supervision can still produce plausible dense outputs.



550

600

650

700

750

Figure 5. Depth maps predicted by EFE. The depth maps are colored using the turbo colormap [22] and the green background is
subtracted for EVE to make the visualizations easier to interpret. Though not all depth values match real-world expectations, the model
has an approximate notion of whether the head and torso are further away or closer to the camera.

4.6. Cross-camera Evaluation

The data normalization procedure is introduced with
the motivation that it produces cropped patches that are
more agnostic to the specific camera used. Consequently,
the models trained using cropped patches would general-
ize across cameras. To evaluate the generalization across
cameras, we conduct a cross-camera evaluation on the EVE
dataset with its four cameras, comparing EFE and the data
normalization-based approach FaceNet.

We show the result in Tab. 5. From the table, we find
that EFE generalizes surprisingly well to extreme camera
view changes, exhibiting large performance differences to
a data normalization-based approach (FaceNet). For exam-
ple, EFE achieves 13.2◦ gaze direction error when training
on the WL camera and testing on the WR camera, which is
a 16.8◦ improvement compared to FaceNet. This is likely
due to the way in which EFE decomposes the PoG estima-
tion problem into the two sub-tasks of gaze origin and gaze
direction estimation.

5. Conclusion

Existing methods in gaze estimation have typically relied
on simple cropping [17] or data normalization [29, 40] as a
scheme for simplifying the gaze direction estimation prob-
lem and for achieving higher performances. In this paper,
we challenged this paradigm and proposed an architecture
that can predict gaze origin from input camera frames di-
rectly. To the best of our knowledge, we are the first to
demonstrate a solution to this problem in a learning-based
approach and end-to-end manner. Furthermore, we were
able to show that despite the smaller effective face size
in the frame-to-gaze setting, the proposed EFE is able to
achieve comparable performances to state-of-the-art meth-

Train / Test MVC WC WL WR

MVC - 31.6 36.8 42.0
WC 30.6 - 10.9 11.6
WL 31.3 6.9 - 30.0
WR 33.1 7.3 22.1 -

(a) Errors achieved by FaceNet

Train / Test MVC WC WL WR

MVC - 23.4 24.8 28.4
WC 23.0 - 10.1 11.0
WL 23.3 11.1 - 13.2
WR 28.0 11.8 14.5 -

(b) Errors achieved by EFE

Table 5. Cross-camera gaze direction error (◦). We conduct a
challenging cross-camera and cross-person evaluation where mod-
els are only trained with one camera view and tested on another
camera view. We use four cameras in the EVE dataset including
the machine vision camera (MVC) under the display, the webcam
on the top (WC ), top left (WL), and top right (WR) of the dis-
play. We see that EFE outperforms the data normalization-based
FaceNet in most cross-camera configurations, by large margins in
many cases.

ods. Future work could expand our proof-of-concept by
proposing alternative methods of breaking down the com-
plex problem of PoG estimation on mobile and edge devices
in many practical settings.

Limitations. The camera-to-screen geometry must be
known a priori for EFE – a limitation that we share with
data normalization-based works. Few-shot learning meth-
ods could be adopted in the future to adapt to novel camera-
to-screen geometries with minimal user input.
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